IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v10y2013i4p279-291.html
   My bibliography  Save this article

Median Aggregation of Distribution Functions

Author

Listed:
  • Stephen C. Hora

    (Center for Risk and Economic Analysis of Terrorism Events, University of Southern California, Los Angeles, California 90089)

  • Benjamin R. Fransen

    (Office of Infrastructure and Protection, National Protection and Programs Directorate, Department of Homeland Security, Washington, DC 20528)

  • Natasha Hawkins

    (Office of Strategy, Planning, Analysis and Risk, Office of Policy, Department of Homeland Security, Washington, DC 20528)

  • Irving Susel

    (Office of Strategy, Planning, Analysis and Risk, Office of Policy, Department of Homeland Security, Washington, DC 20528)

Abstract

When multiple redundant probabilistic judgments are obtained from subject matter experts, it is common practice to aggregate their differing views into a single probability or distribution. Although many methods have been proposed for mathematical aggregation, no single procedure has gained universal acceptance. The most widely used procedure is simple arithmetic averaging, which has both desirable and undesirable properties. Here we propose an alternative for aggregating distribution functions that is based on the median cumulative probabilities at fixed values of the variable. It is shown that aggregating cumulative probabilities by medians is equivalent, under certain conditions, to aggregating quantiles. Moreover, the median aggregate has better calibration than mean aggregation of probabilities when the experts are independent and well calibrated and produces sharper aggregate distributions for well-calibrated and independent experts when they report a common location-scale distribution. We also compare median aggregation to mean aggregation of quantiles.

Suggested Citation

  • Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
  • Handle: RePEc:inm:ordeca:v:10:y:2013:i:4:p:279-291
    DOI: 10.1287/deca.2013.0282
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.2013.0282
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2013.0282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727.
    2. Hora, Stephen C. & Hora, Judith A. & Dodd, Nancy G., 1992. "Assessment of probability distributions for continuous random variables: A comparison of the bisection and fixed value methods," Organizational Behavior and Human Decision Processes, Elsevier, vol. 51(1), pages 133-155, February.
    3. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    4. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    5. Stephen C. Hora, 2004. "Probability Judgments for Continuous Quantities: Linear Combinations and Calibration," Management Science, INFORMS, vol. 50(5), pages 597-604, May.
    6. Robert L. Winkler, 1981. "Combining Probability Distributions from Dependent Information Sources," Management Science, INFORMS, vol. 27(4), pages 479-488, April.
    7. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    8. Stephen C. Hora, 2010. "An Analytic Method for Evaluating the Performance of Aggregation Rules for Probability Densities," Operations Research, INFORMS, vol. 58(5), pages 1440-1449, October.
    9. Peter A. Morris, 1977. "Combining Expert Judgments: A Bayesian Approach," Management Science, INFORMS, vol. 23(7), pages 679-693, March.
    10. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    11. Merkle, Milan, 2005. "Jensen's inequality for medians," Statistics & Probability Letters, Elsevier, vol. 71(3), pages 277-281, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    2. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    3. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    4. Gruetzemacher, Ross & Paradice, David & Lee, Kang Bok, 2020. "Forecasting extreme labor displacement: A survey of AI practitioners," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    5. Stephen Hora & Erim Kardeş, 2015. "Calibration, sharpness and the weighting of experts in a linear opinion pool," Annals of Operations Research, Springer, vol. 229(1), pages 429-450, June.
    6. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    7. Alexander M. R. Bakker & Domitille Louchard & Klaus Keller, 2017. "Sources and implications of deep uncertainties surrounding sea-level projections," Climatic Change, Springer, vol. 140(3), pages 339-347, February.
    8. Yuyu Fan & David V. Budescu & David Mandel & Mark Himmelstein, 2019. "Improving Accuracy by Coherence Weighting of Direct and Ratio Probability Judgments," Decision Analysis, INFORMS, vol. 16(3), pages 197-217, September.
    9. Ying Han & David Budescu, 2019. "A universal method for evaluating the quality of aggregators," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 14(4), pages 395-411, July.
    10. Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
    11. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    12. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    13. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    14. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    15. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    16. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    17. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2020. "Robust portfolio decision analysis: An application to the energy research and development portfolio problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1107-1120.
    18. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    19. Yael Grushka-Cockayne & Victor Richmond R. Jose & Kenneth C. Lichtendahl Jr., 2017. "Ensembles of Overfit and Overconfident Forecasts," Management Science, INFORMS, vol. 63(4), pages 1110-1130, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    2. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    3. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    4. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    5. Stephen C. Hora, 2013. "A Note on the Aggregation of Event Probabilities," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 909-914, May.
    6. Stephen Hora & Erim Kardeş, 2015. "Calibration, sharpness and the weighting of experts in a linear opinion pool," Annals of Operations Research, Springer, vol. 229(1), pages 429-450, June.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    9. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    10. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    11. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    12. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    13. Ali E. Abbas, 2009. "A Kullback-Leibler View of Linear and Log-Linear Pools," Decision Analysis, INFORMS, vol. 6(1), pages 25-37, March.
    14. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    15. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    16. Gilberto Montibeller & Detlof von Winterfeldt, 2015. "Cognitive and Motivational Biases in Decision and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1230-1251, July.
    17. Mehmet Eren Ahsen & Mehmet Ulvi Saygi Ayvaci & Srinivasan Raghunathan, 2019. "When Algorithmic Predictions Use Human-Generated Data: A Bias-Aware Classification Algorithm for Breast Cancer Diagnosis," Service Science, INFORMS, vol. 30(1), pages 97-116, March.
    18. James K. Hammitt & Yifan Zhang, 2013. "Combining Experts’ Judgments: Comparison of Algorithmic Methods Using Synthetic Data," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 109-120, January.
    19. Neil A. Stiber & Mitchell J. Small & Marina Pantazidou, 2004. "Site‐Specific Updating and Aggregation of Bayesian Belief Network Models for Multiple Experts," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1529-1538, December.
    20. Yael Grushka-Cockayne & Victor Richmond R. Jose & Kenneth C. Lichtendahl Jr., 2017. "Ensembles of Overfit and Overconfident Forecasts," Management Science, INFORMS, vol. 63(4), pages 1110-1130, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:10:y:2013:i:4:p:279-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.