IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v229y2015i1p429-45010.1007-s10479-015-1846-0.html
   My bibliography  Save this article

Calibration, sharpness and the weighting of experts in a linear opinion pool

Author

Listed:
  • Stephen Hora
  • Erim Kardeş

Abstract

Linear opinion pools are the most common form of aggregating the probabilistic judgments of multiple experts. Here, the performance of such an aggregation is examined in terms of the calibration and sharpness of the component judgments. The performance is measured through the average quadratic score of the aggregate. Trade-offs between calibration and sharpness are examined and an expression for the optimal weighting of two dependent experts in a linear combination is given. Circumstances where one expert would be disqualified are investigated. Optimal weights for the multiple, dependent experts are found through a concave quadratic program. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Stephen Hora & Erim Kardeş, 2015. "Calibration, sharpness and the weighting of experts in a linear opinion pool," Annals of Operations Research, Springer, vol. 229(1), pages 429-450, June.
  • Handle: RePEc:spr:annopr:v:229:y:2015:i:1:p:429-450:10.1007/s10479-015-1846-0
    DOI: 10.1007/s10479-015-1846-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-015-1846-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-015-1846-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    2. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    3. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    4. Morris H. DeGroot & Julia Mortera, 1991. "Optimal Linear Opinion Pools," Management Science, INFORMS, vol. 37(5), pages 546-558, May.
    5. Hora, Stephen C. & Hora, Judith A. & Dodd, Nancy G., 1992. "Assessment of probability distributions for continuous random variables: A comparison of the bisection and fixed value methods," Organizational Behavior and Human Decision Processes, Elsevier, vol. 51(1), pages 133-155, February.
    6. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    7. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    8. Stephen C. Hora, 2004. "Probability Judgments for Continuous Quantities: Linear Combinations and Calibration," Management Science, INFORMS, vol. 50(5), pages 597-604, May.
    9. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, James W. & Taylor, Kathryn S., 2023. "Combining probabilistic forecasts of COVID-19 mortality in the United States," European Journal of Operational Research, Elsevier, vol. 304(1), pages 25-41.
    2. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    5. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    6. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    7. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    8. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
    9. Ray, Evan L. & Brooks, Logan C. & Bien, Jacob & Biggerstaff, Matthew & Bosse, Nikos I. & Bracher, Johannes & Cramer, Estee Y. & Funk, Sebastian & Gerding, Aaron & Johansson, Michael A. & Rumack, Aaron, 2023. "Comparing trained and untrained probabilistic ensemble forecasts of COVID-19 cases and deaths in the United States," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1366-1383.
    10. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    12. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    13. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    14. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    15. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    16. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    17. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    18. Bjørnland, Hilde C. & Gerdrup, Karsten & Jore, Anne Sofie & Smith, Christie & Thorsrud, Leif Anders, 2011. "Weights and pools for a Norwegian density combination," The North American Journal of Economics and Finance, Elsevier, vol. 22(1), pages 61-76, January.
    19. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    20. Krüger, Fabian & Pavlova, Lora, 2019. "Quantifying subjective oncertainty in survey expectations," Working Papers 0664, University of Heidelberg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:229:y:2015:i:1:p:429-450:10.1007/s10479-015-1846-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.