IDEAS home Printed from https://ideas.repec.org/a/ila/anaeco/v20y2005i1p45-62.html
   My bibliography  Save this article

The implementation of monetary policy in an emerging economy: the case of Chile

Author

Listed:
  • Christian A. Johnson

    (Universidad Adolfo Ibañez)

  • Rodrigo Vergara

    (Universidad Católica de Chile)

Abstract

Central bank authorities base implementation of monetary policy on an analysis of multiple variables known as monetary policy indicators. In a small open economy such as Chile, these indicators may include inflation misalignments, unemployment, GDP growth, money growth, the current account balance, exchange rate volatility and international re-serves. A neural network approach is used to establish the correspond-ing weights considered by the Board of the Central Bank of Chile during the period 1995-2003. GDP growth and the difference between the actual and the target inflation were found to be among the variables of greatest weight in the monetary policy decision-making process of the Central Bank of Chile during this period.

Suggested Citation

  • Christian A. Johnson & Rodrigo Vergara, 2005. "The implementation of monetary policy in an emerging economy: the case of Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
  • Handle: RePEc:ila:anaeco:v:20:y:2005:i:1:p:45-62
    as

    Download full text from publisher

    File URL: http://www.rae-ear.org/index.php/rae/article/view/45
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pablo García & Luis Óscar Herrera & Rodrigo O. Valdés, 2002. "New Frontiers for Monetary Policy in Chile," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Inflation Targeting: Desing, Performance, Challenges, edition 1, volume 5, chapter 15, pages 627-649, Central Bank of Chile.
    2. Moshiri, Saeed & Cameron, Norman E & Scuse, David, 1999. "Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation," Computational Economics, Springer;Society for Computational Economics, vol. 14(3), pages 219-235, December.
    3. Norman Loayza & Raimundo Soto, 2002. "Inflation Targeting: An Overview," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Inflation Targeting: Desing, Performance, Challenges, edition 1, volume 5, chapter 1, pages 001-022, Central Bank of Chile.
    4. Church, Keith B. & Curram, Stephen P., 1996. "Forecasting consumers' expenditure: A comparison between econometric and neural network models," International Journal of Forecasting, Elsevier, vol. 12(2), pages 255-267, June.
    5. Frederic S. Miskin & Klaus Schmidt-Hebbel, 2007. "Does Inflation Targeting Make a Difference?," Central Banking, Analysis, and Economic Policies Book Series, in: Frederic S. Miskin & Klaus Schmidt-Hebbel & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Se (ed.),Monetary Policy under Inflation Targeting, edition 1, volume 11, chapter 9, pages 291-372, Central Bank of Chile.
    6. Felipe Morandé, 2002. "A Decade of Inflation Targeting in Chile: Developments, Lessons, and Challenges," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Raimundo Soto & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series Editor) (ed.),Inflation Targeting: Desing, Performance, Challenges, edition 1, volume 5, chapter 14, pages 583-626, Central Bank of Chile.
    7. Rodrigo Vergara, 2003. "El Dinero como Indicador de Política Monetaria en Chile," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 40(121), pages 707-715.
    8. Dorota Witkowska, 1999. "Applying artificial neural networks to bank-decision simulations," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 350-368, August.
    9. Wu, Chunchi & Wang, Xu-Ming, 2000. "A Neural Network Approach for Analyzing Small Business Lending Decisions," Review of Quantitative Finance and Accounting, Springer, vol. 15(3), pages 259-276, November.
    10. Francisco Rosende, 2002. "La Nueva Síntesis Keynesiana: Análisis e Implicancias de Política," Documentos de Trabajo 199, Instituto de Economia. Pontificia Universidad Católica de Chile..
    11. Greg Tkacz & Sarah Hu, 1999. "Forecasting GDP Growth Using Artificial Neural Networks," Staff Working Papers 99-3, Bank of Canada.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, October.
    13. John Creedy & Vance L. Martin (ed.), 1997. "Nonlinear Economic Models," Books, Edward Elgar Publishing, number 1314.
    14. Sebastian Edwards, 2003. "Debt relief and fiscal sustainability," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 139(1), pages 38-65, March.
    15. Nicholas Wilson & Kwee Chong & Michael Peel & A. N. Kolmogorov, 1995. "Neural Network Simulation and the Prediction of Corporate Outcomes: Some Empirical Findings," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 2(1), pages 31-50.
    16. Schmidt-Hebbel, Klaus & Tapia, Matias, 2002. "Inflation targeting in Chile," The North American Journal of Economics and Finance, Elsevier, vol. 13(2), pages 125-146, August.
    17. El Shazly, Mona R. & El Shazly, Hassan E., 1999. "Forecasting currency prices using a genetically evolved neural network architecture," International Review of Financial Analysis, Elsevier, vol. 8(1), pages 67-82.
    18. Olmeda, Ignacio & Fernandez, Eugenio, 1997. "Hybrid Classifiers for Financial Multicriteria Decision Making: The Case of Bankruptcy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 10(4), pages 317-335, November.
    19. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
    20. Lim, G C & McNelis, Paul D, 1998. "The Effect of the Nikkei and the S&P on the All-Ordinaries: A Comparison of Three Models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 3(3), pages 217-228, July.
    21. Ángel Cabrera & Luis Felipe Lagos, 2002. "Monetary Policy in Chile: A Black Box?," Central Banking, Analysis, and Economic Policies Book Series, in: Norman Loayza & Klaus Schmidt-Hebbel & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy: Rules and Transmission Mechanisms, edition 1, volume 4, chapter 8, pages 197-246, Central Bank of Chile.
    22. Francisco Rosende, 2003. "¿El Fin del Monetarismo?," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 40(121), pages 681-689.
    23. Raimundo Soto, "undated". "Nonlinearities in the Demand for money: A Neural Network Approach," ILADES-UAH Working Papers inv107, Universidad Alberto Hurtado/School of Economics and Business.
    24. Mona Shazly & Hassan Shazly, 1999. "Forecasting currency prices using a genetically evolved neural network architecture," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(1), pages 148-148, February.
    25. Baker, Bruce D. & Richards, Craig E., 1999. "A comparison of conventional linear regression methods and neural networks for forecasting educational spending," Economics of Education Review, Elsevier, vol. 18(4), pages 405-415, October.
    26. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian A. Johnson, 2005. "Modelos de alerta temprana para pronosticar crisis bancarias: desde la extracción de señales a las redes neuronales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 95-121, June.
    2. Pablo Gonzalez & Mauricio Tejada, 2006. "No linealidades en la regla de política monetaria del Banco Central de Chile: una evidencia empírica," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 21(1), pages 81-115, July.
    3. Jorge Enrique Restrepo Londono, 1998. "Reglas monetarias en una economía pequena y abierta," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 17(33), pages 61-84, July.
    4. Rhenals M., Remberto & Saldarriaga, Juan Pablo, 2008. "Una regla de Taylor óptima para Colombia, 1991-2006," Revista Lecturas de Economía, Universidad de Antioquia, CIE, November.
    5. Arend, Mario, 2005. "Efectos de una nueva medida de shock monetario bajo el esquema de metas de inflación en Chile [Effects of a New Measure of Monetary Shock Under Inflation Targeting in Chile]," MPRA Paper 27156, University Library of Munich, Germany.
    6. Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
    7. Francisco Rosende, 2002. "La Nueva Síntesis Keynesiana: Análisis e Implicancias de Política Monetaria," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 39(117), pages 203-233.
    8. César Calderón & Roberto Duncan & Klaus Schmidt-Hebbel, 2004. "The role of credibility in the cyclical properties of macroeconomic policies in emerging economies," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 140(4), pages 613-633, December.
    9. Mohammed SAIFUL ISLAM & Mohammad Taslim UDDIN, 2011. "Inflation Targeting as the Monetary Policy Framework: Bangladesh Perspective," Economia. Seria Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 14(1), pages 106-119, June.
    10. Schmidt-Hebbel, Klaus & Tapia, Matias, 2002. "Inflation targeting in Chile," The North American Journal of Economics and Finance, Elsevier, vol. 13(2), pages 125-146, August.
    11. Ralf Fendel & Michael Frenkel & Jan-Christoph Rülke, 2008. "Infation Targeting matters! - Novel evidence from 'ex ante' Taylor rules in emerging markets," WHU Working Paper Series - Economics Group 08-02, WHU - Otto Beisheim School of Management.
    12. Rodrigo Caputo, 2009. "External Shocks and Monetary Policy. Does it Pay to Respond to Exchange Rate Desviations?," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 24(1), pages 55-99, Junio.
    13. Ali Asgary & Ali Sadeghi Naini, 2011. "Modelling The Adaptation Of Business Continuity Planning By Businesses Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 89-104, April.
    14. Rodrigo Fuentes & Alejandro Jara & Klaus Schmidt-Hebbel & Matías Tapia & Erika Arraño, 2003. "Efectos de la Nominalización de la Política Monetaria en Chile," Working Papers Central Bank of Chile 197, Central Bank of Chile.
    15. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.
    16. repec:udc:esteco:v:44:y:2017:i:2:p:97-124 is not listed on IDEAS
    17. Nestor Azcona, 2018. "Can Price-Level Targeting Reduce Exchange Rate Volatility?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 44(3), pages 400-436, June.
    18. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    19. Francisco Rosende R., 2004. "El marco teórico de la política monetaria," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(2), pages 85-117, December.
    20. Rodrigo Caputo, 2004. "Exchange Rates, Inflation and Monetary Policy Objectives in Open Economies: The Experience of Chile," Econometric Society 2004 Latin American Meetings 298, Econometric Society.
    21. Broto, Carmen, 2011. "Inflation targeting in Latin America: Empirical analysis using GARCH models," Economic Modelling, Elsevier, vol. 28(3), pages 1424-1434, May.

    More about this item

    Keywords

    Monetary Policy; Neural Network;

    JEL classification:

    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ila:anaeco:v:20:y:2005:i:1:p:45-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mauricio Tejada (email available below). General contact details of provider: https://edirc.repec.org/data/deilacl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.