IDEAS home Printed from https://ideas.repec.org/a/kap/iaecre/v5y1999i1p148-14810.1007-bf02295042.html
   My bibliography  Save this article

Forecasting currency prices using a genetically evolved neural network architecture

Author

Listed:
  • Mona Shazly
  • Hassan Shazly

Abstract

No abstract is available for this item.

Suggested Citation

  • Mona Shazly & Hassan Shazly, 1999. "Forecasting currency prices using a genetically evolved neural network architecture," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(1), pages 148-148, February.
  • Handle: RePEc:kap:iaecre:v:5:y:1999:i:1:p:148-148:10.1007/bf02295042
    DOI: 10.1007/BF02295042
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02295042
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02295042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider A. Khan & Shahryar Ghorbani & Elham Shabani & Shahab S. Band, 2024. "Enhancement of Neural Networks Model’s Predictions of Currencies Exchange Rates by Phase Space Reconstruction and Harris Hawks’ Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 835-860, February.
    2. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    3. Braham, Rihem & de Peretti, Christian & Belkacem, Lotfi, 2020. "The role of political patronage in the risk-taking behaviour of banks in the Middle East and North Africa," Research in International Business and Finance, Elsevier, vol. 53(C).
    4. Polyzos, Stathis & Samitas, Aristeidis & Katsaiti, Marina-Selini, 2020. "Who is unhappy for Brexit? A machine-learning, agent-based study on financial instability," International Review of Financial Analysis, Elsevier, vol. 72(C).
    5. Christian A. Johnson, 2005. "Modelos de alerta temprana para pronosticar crisis bancarias: desde la extracción de señales a las redes neuronales," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 95-121, June.
    6. Tasadduq Imam & Kevin Tickle & Abdullahi Ahmed & William Guo, 2012. "Linear Relationship Between The Aud/Usd Exchange Rate And The Respective Stock Market Indices: A Computational Finance Perspective," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(1), pages 19-42, January.
    7. Christian A. Johnson & Rodrigo Vergara, 2005. "The implementation of monetary policy in an emerging economy: the case of Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
    8. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    9. Mona Shazly & Alice Lou, 2016. "Comparing the Forecasting Performance of Futures Oil Prices with Genetically Evolved Neural Networks," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 22(4), pages 361-376, November.
    10. Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
    11. Ali Asgary & Ali Sadeghi Naini, 2011. "Modelling The Adaptation Of Business Continuity Planning By Businesses Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 89-104, April.
    12. Farzan Aminian & E. Suarez & Mehran Aminian & Daniel Walz, 2006. "Forecasting Economic Data with Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 71-88, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:iaecre:v:5:y:1999:i:1:p:148-148:10.1007/bf02295042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.