IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v48y2008i4p733-755.html
   My bibliography  Save this article

A neural network approach for credit risk evaluation

Author

Listed:
  • Angelini, Eliana
  • di Tollo, Giacomo
  • Roli, Andrea

Abstract

The Basel Committee on Banking Supervision proposes a capital adequacy framework that allows banks to calculate capital requirement for their banking books using internal assessments of key risk drivers. Hence the need for systems to assess credit risk. Among the new methods, artificial neural networks have shown promising results. In this work, we describe the case of a successful application of neural networks to credit risk assessment. We developed two neural network systems, one with a standard feedforward network, while the other with a special purpose architecture. The application is tested on real-world data, related to Italian small businesses. We show that neural networks can be very successful in learning and estimating the in bonis/default tendency of a borrower, provided that careful data analysis, data pre-processing and training are performed.

Suggested Citation

  • Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
  • Handle: RePEc:eee:quaeco:v:48:y:2008:i:4:p:733-755
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062-9769(07)00076-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pamela K. Coats & L. Franklin Fant, 1993. "Recognizing Financial Distress Patterns Using a Neural Network Tool," Financial Management, Financial Management Association, vol. 22(3), Fall.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. El Shazly, Mona R. & El Shazly, Hassan E., 1999. "Forecasting currency prices using a genetically evolved neural network architecture," International Review of Financial Analysis, Elsevier, vol. 8(1), pages 67-82.
    4. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    5. Rotundo, G., 2004. "Neural networks for large financial crashes forecast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 77-80.
    6. Mona Shazly & Hassan Shazly, 1999. "Forecasting currency prices using a genetically evolved neural network architecture," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(1), pages 148-148, February.
    7. Baker, Bruce D. & Richards, Craig E., 1999. "A comparison of conventional linear regression methods and neural networks for forecasting educational spending," Economics of Education Review, Elsevier, vol. 18(4), pages 405-415, October.
    8. Steiner, Manfred & Wittkemper, Hans-Georg, 1997. "Portfolio optimization with a neural network implementation of the coherent market hypothesis," European Journal of Operational Research, Elsevier, vol. 100(1), pages 27-40, July.
    9. Galindo, J & Tamayo, P, 2000. "Credit Risk Assessment Using Statistical and Machine Learning: Basic Methodology and Risk Modeling Applications," Computational Economics, Springer;Society for Computational Economics, vol. 15(1-2), pages 107-143, April.
    10. Vijay Desai & Rakesh Bharati, 1998. "A comparison of linear regression and neural network methods for predicting excess returns on large stocks," Annals of Operations Research, Springer, vol. 78(0), pages 127-163, January.
    11. Badiru, Adedeji B. & Sieger, David B., 1998. "Neural network as a simulation metamodel in economic analysis of risky projects," European Journal of Operational Research, Elsevier, vol. 105(1), pages 130-142, February.
    12. Wu, Chunchi & Wang, Xu-Ming, 2000. "A Neural Network Approach for Analyzing Small Business Lending Decisions," Review of Quantitative Finance and Accounting, Springer, vol. 15(3), pages 259-276, November.
    13. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    14. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    15. Hamid, Shaikh A. & Iqbal, Zahid, 2004. "Using neural networks for forecasting volatility of S&P 500 Index futures prices," Journal of Business Research, Elsevier, vol. 57(10), pages 1116-1125, October.
    16. Piramuthu, Selwyn, 1999. "Financial credit-risk evaluation with neural and neurofuzzy systems," European Journal of Operational Research, Elsevier, vol. 112(2), pages 310-321, January.
    17. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    2. Greta Falavigna, 2008. "Nouveaux instruments d’évaluation pour le risque financier d’entreprise," CERIS Working Paper 200801, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    3. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    4. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    5. Su-Han Woo & Min-Su Kwon & Kum Fai Yuen, 2021. "Financial determinants of credit risk in the logistics and shipping industries," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 268-290, June.
    6. Greta Falavigna, 2006. "Models for Default Risk Analysis: Focus on Artificial Neural Networks, Model Comparisons, Hybrid Frameworks," CERIS Working Paper 200610, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    7. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    8. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    9. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    10. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    11. repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
    12. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    13. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.
    14. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    15. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    16. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    17. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    18. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    19. Christian A. Johnson & Rodrigo Vergara, 2005. "The implementation of monetary policy in an emerging economy: the case of Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
    20. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    21. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2012. "Support vector machines with evolutionary feature selection for default prediction," SFB 649 Discussion Papers 2012-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:48:y:2008:i:4:p:733-755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.