IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v14y1999i3p219-35.html
   My bibliography  Save this article

Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation

Author

Listed:
  • Moshiri, Saeed
  • Cameron, Norman E
  • Scuse, David

Abstract

The back-propagation neural network (BPN) model has been the most popular form of artificial neural network model used for forecasting, particularly in economics and finance. It is a static (feed-forward) model which has a learning process in both hidden and output layers. In this paper we compare the performance of the BPN model with that of two other neural network models, viz., the radial basis function network (RBFN) model and the recurrent neural network (RNN) model, in the context of forecasting inflation. The RBFN model is a hybrid model with a learning process that is much faster than the BPN model and that is able to generate almost the same results as the BPN model. The RNN model is a dynamic model which allows feedback from other layers to the input layer, enabling it to capture the dynamic behavior of the series. The results of the ANN models are also compared with those of the econometric time series models. Citation Copyright 1999 by Kluwer Academic Publishers.

Suggested Citation

  • Moshiri, Saeed & Cameron, Norman E & Scuse, David, 1999. "Static, Dynamic, and Hybrid Neural Networks in Forecasting Inflation," Computational Economics, Springer;Society for Computational Economics, vol. 14(3), pages 219-235, December.
  • Handle: RePEc:kap:compec:v:14:y:1999:i:3:p:219-35
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golnoosh Babaei & Shahrooz Bamdad, 2021. "A New Hybrid Instance-Based Learning Model for Decision-Making in the P2P Lending Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 419-432, January.
    2. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    3. M. Ali Choudhary & Adnan Haider, 2012. "Neural network models for inflation forecasting: an appraisal," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2631-2635, July.
    4. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
    5. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    6. Binner, J.M. & Tino, P. & Tepper, J. & Anderson, R. & Jones, B. & Kendall, G., 2010. "Does money matter in inflation forecasting?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4793-4808.
    7. Yochanan Shachmurove & Doris Witkowska, "undated". "Utilizing Artificial Neural Network Model to Predict Stock Markets," Penn CARESS Working Papers cae679cdc2e020f74d692ae73, Penn Economics Department.
    8. Christian A. Johnson & Rodrigo Vergara, 2005. "The implementation of monetary policy in an emerging economy: the case of Chile," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 20(1), pages 45-62, June.
    9. Laura Brown & Saeed Moshiri, 2004. "Unemployment variation over the business cycles: a comparison of forecasting models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(7), pages 497-511.
    10. Ali Asgary & Ali Sadeghi Naini, 2011. "Modelling The Adaptation Of Business Continuity Planning By Businesses Using Neural Networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 89-104, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:14:y:1999:i:3:p:219-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.