IDEAS home Printed from https://ideas.repec.org/a/igg/jwsr00/v15y2018i3p82-102.html
   My bibliography  Save this article

Cross-Urban Point-of-Interest Recommendation for Non-Natives

Author

Listed:
  • Tao Xu

    (Wuhan University, Wuhan, China)

  • Yutao Ma

    (Wuhan University, Wuhan, China & WISET Automation Co., Ltd., Wuhan, China)

  • Qian Wang

    (Wuhan University, Wuhan, China)

Abstract

This article describes how understanding human mobility behavior is of great significance for predicting a broad range of socioeconomic phenomena in contemporary society. Although many studies have been conducted to uncover behavioral patterns of intra-urban and inter-urban human mobility, a fundamental question remains unanswered: To what degree is human mobility behavior predictable in new cities—a person has never visited before? Location-based social networks with a large volume of check-in records provide an unprecedented opportunity to investigate cross-urban human mobility. The authors' empirical study on millions of records from Foursquare reveals the motives and behavioral patterns of non-natives in 59 cities across the United States. Inspired by the ideology of transfer learning, the authors also propose a machine learning model, which is designed based on the regularities that they found in this study, to predict cross-urban human whereabouts after non-natives move to new cities. The experimental results validate the effectiveness and efficiency of the proposed model, thus allowing us to predict and control activities driven by cross-urban human mobility, such as mobile recommendation, visual (personal) assistant, and epidemic prevention.

Suggested Citation

  • Tao Xu & Yutao Ma & Qian Wang, 2018. "Cross-Urban Point-of-Interest Recommendation for Non-Natives," International Journal of Web Services Research (IJWSR), IGI Global, vol. 15(3), pages 82-102, July.
  • Handle: RePEc:igg:jwsr00:v:15:y:2018:i:3:p:82-102
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWSR.2018070105
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    2. Riccardo Gallotti & Armando Bazzani & Sandro Rambaldi & Marc Barthelemy, 2016. "A stochastic model of randomly accelerated walkers for human mobility," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    2. repec:ers:journl:v:xxiv:y:2021:i:4b:p:659-667 is not listed on IDEAS
    3. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Roberts, Leigh, 2014. "Consistent estimation of breakpoints in time series, with application to wavelet analysis of Citigroup returns," Working Paper Series 18815, Victoria University of Wellington, School of Economics and Finance.
    5. David G Mets & Michael S Brainard, 2018. "An automated approach to the quantitation of vocalizations and vocal learning in the songbird," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-29, August.
    6. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    7. Noah E. Friedkin, 1984. "Structural Cohesion and Equivalence Explanations of Social Homogeneity," Sociological Methods & Research, , vol. 12(3), pages 235-261, February.
    8. David Matesanz Gomez & Guillermo J. Ortega & Benno Torgler, 2011. "Measuring globalization: A hierarchical network approach," CREMA Working Paper Series 2011-11, Center for Research in Economics, Management and the Arts (CREMA).
    9. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    10. İsmail Güzel & Atabey Kaygun, 2022. "A new non-archimedean metric on persistent homology," Computational Statistics, Springer, vol. 37(4), pages 1963-1983, September.
    11. Lisa Price, 2001. "Demystifying farmers' entomological and pest management knowledge: A methodology for assessing the impacts on knowledge from IPM-FFS and NES interventions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 18(2), pages 153-176, June.
    12. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    13. Geert Soete & Wayne DeSarbo & J. Carroll, 1985. "Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 173-192, December.
    14. Silvia Blasi & Edoardo Gobbo & Silvia Rita Sedita, 2022. "Big Data for smart cities and citizen engagement: evidence from Twitter data analysis on Italian municipalities," Working Papers - Business wp2022_01.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    15. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    16. Dalila B. M. M. Fontes & Seyed Mahdi Homayouni, 2019. "Joint production and transportation scheduling in flexible manufacturing systems," Journal of Global Optimization, Springer, vol. 74(4), pages 879-908, August.
    17. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    18. Fernández, D. & Arnold, R. & Pledger, S., 2016. "Mixture-based clustering for the ordered stereotype model," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 46-75.
    19. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    20. Andreella, Angela & Aliverti, Emanuele & Caldura, Federico & Campostrini, Stefano, 2024. "Spatial clusters for demand and supply of early childhood education and care services in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    21. Wayne DeSarbo & J. Douglas Carroll, 1985. "Three-way metric unfolding via alternating weighted least squares," Psychometrika, Springer;The Psychometric Society, vol. 50(3), pages 275-300, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jwsr00:v:15:y:2018:i:3:p:82-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.