IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v121y2016icp48-63.html
   My bibliography  Save this article

Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order

Author

Listed:
  • Arenas, Abraham J.
  • González-Parra, Gilberto
  • Chen-Charpentier, Benito M.

Abstract

In this paper we construct nonstandard finite difference (NSFD) schemes to obtain numerical solutions of the susceptible–infected (SI) and susceptible–infected–recovered (SIR) fractional-order epidemic models. In order to deal with fractional derivatives we apply the Caputo operator and use the Grünwald–Letnikov method to approximate the fractional derivatives in the numerical simulations. According to the principles of dynamic consistency we construct NSFD schemes to numerically integrate the fractional-order epidemic models. These NSFD schemes preserve the positivity that other classical methods do not guarantee. Additionally, the NSFD schemes hold other conservation properties of the solution corresponding to the continuous epidemic model. We run some numerical comparisons with classical methods to test the behavior of the NSFD schemes using the short memory principle. We conclude that the NSFD schemes, which are explicit and computationally inexpensive, are reliable methods to obtain realistic positive numerical solutions of the SI and SIR fractional-order epidemic models.

Suggested Citation

  • Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
  • Handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:48-63
    DOI: 10.1016/j.matcom.2015.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475415001883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2015.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Caputo, 2014. "The role of memory in modeling social and economic cycles of extreme events," Chapters, in: Francesco Forte & Ram Mudambi & Pietro Maria Navarra (ed.), A Handbook of Alternative Theories of Public Economics, chapter 11, pages 245-259, Edward Elgar Publishing.
    2. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sweilam, Nasser H. & Abou Hasan, Muner M. & Baleanu, Dumitru, 2017. "New studies for general fractional financial models of awareness and trial advertising decisions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 772-784.
    2. Shah, Kamal & Abdeljawad, Thabet & Ud Din, Rahim, 2022. "To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Iqbal, Zafar & Ahmed, Nauman & Baleanu, Dumitru & Adel, Waleed & Rafiq, Muhammad & Aziz-ur Rehman, Muhammad & Alshomrani, Ali Saleh, 2020. "Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
    5. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    6. Wen-Jing Zhu & Shou-Feng Shen & Wen-Xiu Ma, 2022. "A (2+1)-Dimensional Fractional-Order Epidemic Model with Pulse Jumps for Omicron COVID-19 Transmission and Its Numerical Simulation," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    7. Nasser Hassan Sweilam & Seham Mahyoub Al-Mekhlafi & Taghreed Abdul Rahman Assiri, 2017. "Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    8. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    9. Khan, Aziz & Gómez-Aguilar, J.F. & Saeed Khan, Tahir & Khan, Hasib, 2019. "Stability analysis and numerical solutions of fractional order HIV/AIDS model," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 119-128.
    10. Sweilam, N.H. & AL - Mekhlafi, S.M. & Mohamed, D.G., 2021. "Novel chaotic systems with fractional differential operators: Numerical approaches," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Hoang, Manh Tuan, 2022. "Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 32-56.
    12. Hoang, Manh Tuan, 2022. "Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra’s population growth model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 359-373.
    13. Hoang, Manh Tuan, 2023. "Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 291-314.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    2. Wang, Yuan-Ming & Xie, Bo, 2023. "A fourth-order fractional Adams-type implicit–explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 21-48.
    3. Rainey Lyons & Aghalaya S. Vatsala & Ross A. Chiquet, 2017. "Picard’s Iterative Method for Caputo Fractional Differential Equations with Numerical Results," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    4. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    6. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    7. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    8. Cardone, Angelamaria & Conte, Dajana, 2020. "Stability analysis of spline collocation methods for fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 501-514.
    9. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    10. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    11. Hamdan, Nur ’Izzati & Kilicman, Adem, 2018. "A fractional order SIR epidemic model for dengue transmission," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 55-62.
    12. Čermák, Jan & Nechvátal, Luděk, 2019. "Stability and chaos in the fractional Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 24-33.
    13. Bonab, Zahra Farzaneh & Javidi, Mohammad, 2020. "Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 71-89.
    14. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    15. Marina Popolizio, 2018. "Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions," Mathematics, MDPI, vol. 6(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:121:y:2016:i:c:p:48-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.