IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4120506.html
   My bibliography  Save this article

Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC

Author

Listed:
  • Jie Zhao
  • Xiujuan Lei
  • Fang-Xiang Wu

Abstract

Protein complexes play a critical role in understanding the biological processes and the functions of cellular mechanisms. Most existing protein complex detection algorithms cannot reflect dynamics of protein complexes. In this paper, a novel algorithm named Improved Cuckoo Search Clustering (ICSC) algorithm is proposed to detect protein complexes in weighted dynamic protein-protein interaction (PPI) networks. First, we constructed weighted dynamic PPI networks and detected protein complex cores in each dynamic subnetwork. Then, ICSC algorithm was used to cluster the protein attachments to the cores. The experimental results on both DIP dataset and Krogan dataset demonstrated that ICSC algorithm is more effective in identifying protein complexes than other competing methods.

Suggested Citation

  • Jie Zhao & Xiujuan Lei & Fang-Xiang Wu, 2017. "Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC," Complexity, Hindawi, vol. 2017, pages 1-11, August.
  • Handle: RePEc:hin:complx:4120506
    DOI: 10.1155/2017/4120506
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/4120506.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/4120506.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/4120506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne-Claude Gavin & Markus Bösche & Roland Krause & Paola Grandi & Martina Marzioch & Andreas Bauer & Jörg Schultz & Jens M. Rick & Anne-Marie Michon & Cristina-Maria Cruciat & Marita Remor & Christia, 2002. "Functional organization of the yeast proteome by systematic analysis of protein complexes," Nature, Nature, vol. 415(6868), pages 141-147, January.
    2. Yuen Ho & Albrecht Gruhler & Adrian Heilbut & Gary D. Bader & Lynda Moore & Sally-Lin Adams & Anna Millar & Paul Taylor & Keiryn Bennett & Kelly Boutilier & Lingyun Yang & Cheryl Wolting & Ian Donalds, 2002. "Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry," Nature, Nature, vol. 415(6868), pages 180-183, January.
    3. Hao Wu & Lin Gao & Jihua Dong & Xiaofei Yang, 2014. "Detecting Overlapping Protein Complexes by Rough-Fuzzy Clustering in Protein-Protein Interaction Networks," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    4. Nevan J. Krogan & Gerard Cagney & Haiyuan Yu & Gouqing Zhong & Xinghua Guo & Alexandr Ignatchenko & Joyce Li & Shuye Pu & Nira Datta & Aaron P. Tikuisis & Thanuja Punna & José M. Peregrín-Alvarez & Mi, 2006. "Global landscape of protein complexes in the yeast Saccharomyces cerevisiae," Nature, Nature, vol. 440(7084), pages 637-643, March.
    5. Anne-Claude Gavin & Patrick Aloy & Paola Grandi & Roland Krause & Markus Boesche & Martina Marzioch & Christina Rau & Lars Juhl Jensen & Sonja Bastuck & Birgit Dümpelfeld & Angela Edelmann & Marie-Ann, 2006. "Proteome survey reveals modularity of the yeast cell machinery," Nature, Nature, vol. 440(7084), pages 631-636, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Hao & István A. Kovács, 2023. "A positive statistical benchmark to assess network agreement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    3. Shuai Qiao & Chia-Wei Lee & Dawafuti Sherpa & Jakub Chrustowicz & Jingdong Cheng & Maximilian Duennebacke & Barbara Steigenberger & Ozge Karayel & Duc Tung Vu & Susanne Gronau & Matthias Mann & Floria, 2022. "Cryo-EM structures of Gid12-bound GID E3 reveal steric blockade as a mechanism inhibiting substrate ubiquitylation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Johannes Venezian & Hagit Bar-Yosef & Hila Ben-Arie Zilberman & Noam Cohen & Oded Kleifeld & Juan Fernandez-Recio & Fabian Glaser & Ayala Shiber, 2024. "Diverging co-translational protein complex assembly pathways are governed by interface energy distribution," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4120506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.