IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v74y2020i2d10.1007_s11235-019-00636-x.html
   My bibliography  Save this article

Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends

Author

Listed:
  • Dhuha Abdulhadi Abduljabbar

    (Universiti Teknologi Malaysia (UTM)
    Baghdad University)

  • Siti Zaiton Mohd Hashim

    (Universiti Teknologi Malaysia (UTM))

  • Roselina Sallehuddin

    (Universiti Teknologi Malaysia (UTM))

Abstract

Over the past couple of decades, the research area of network community detection has seen substantial growth in popularity, leading to a wide range of researches in the literature. Nature-inspired optimization algorithms (NIAs) have given a significant contribution to solving the community detection problem by transcending the limitations of other techniques. However, due to the importance of the topic and its prominence in many applications, the information on it is scattered in various journals, conference proceedings, and patents, and lacked a focused-literature that synthesizes them in a single document. This review aims to provide an overview of the NIAs and their role in solving community detection problems. To achieve this goal, a systematic study is performed on NIAs, followed by historical and statistical analysis of the researches involved. This would lead to the identification of future trends, as well as the discovery of related research challenges. This review provides a guide for researchers to identify new areas of research, as well as directing their future interest towards developing more effective frameworks in the context of nature-inspired community detection algorithms.

Suggested Citation

  • Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
  • Handle: RePEc:spr:telsys:v:74:y:2020:i:2:d:10.1007_s11235-019-00636-x
    DOI: 10.1007/s11235-019-00636-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-019-00636-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-019-00636-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
    2. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    3. Peng Wu & Li Pan, 2015. "Multi-Objective Community Detection Based on Memetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-31, May.
    4. Federico Botta & Charo I del Genio, 2017. "Analysis of the communities of an urban mobile phone network," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
    5. Ramadan Babers & Aboul Ella Hassanien, 2017. "A Nature-Inspired Metaheuristic Cuckoo Search Algorithm for Community Detection in Social Networks," International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), IGI Global, vol. 8(1), pages 50-62, January.
    6. Jie Zhao & Xiujuan Lei & Fang-Xiang Wu, 2017. "Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC," Complexity, Hindawi, vol. 2017, pages 1-11, August.
    7. Chuan Shi & Zhenyu Yan & Yi Wang & Yanan Cai & Bin Wu, 2010. "A Genetic Algorithm For Detecting Communities In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 3-17.
    8. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    9. Firat, Aykut & Chatterjee, Sangit & Yilmaz, Mustafa, 2007. "Genetic clustering of social networks using random walks," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6285-6294, August.
    10. Amir Lakizadeh & Saeed Jalili, 2016. "BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-16, July.
    11. Dongxiao He & Jie Liu & Bo Yang & Yuxiao Huang & Dayou Liu & Di Jin, 2012. "An Ant-Based Algorithm With Local Optimization For Community Detection In Large-Scale Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-26.
    12. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    13. Zhu, Xiaoyu & Ma, Yinghong & Liu, Zhiyuan, 2018. "A novel evolutionary algorithm on communities detection in signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 938-946.
    14. Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
    15. Nancy Girdhar & K. K. Bharadwaj, 2019. "Community Detection in Signed Social Networks Using Multiobjective Genetic Algorithm," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 70(8), pages 788-804, August.
    16. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Paula Lemos & Antônio Cláudio Paschoarelli Veiga & Sandro Adriano Fasolo, 2021. "Estimation of $$\alpha -\kappa -\mu $$ α - κ - μ mobile fading channel parameters using evolutionary algorithms," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(1), pages 189-211, May.
    2. Fanshun Zhang & Congdong Li & Cejun Cao & Zhiwei Zhang, 2022. "Random or preferential? Evolutionary mechanism of user behavior in co-creation community," Computational and Mathematical Organization Theory, Springer, vol. 28(2), pages 141-177, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    2. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    3. Chen, Kaiqi & Bi, Weihong, 2019. "A new genetic algorithm for community detection using matrix representation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    5. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    6. Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
    7. Xiao, Jing & Zhang, Yong-Jian & Xu, Xiao-Ke, 2018. "Convergence improvement of differential evolution for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 762-779.
    8. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    9. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    10. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    11. Bilal, Saoud & Abdelouahab, Moussaoui, 2017. "Evolutionary algorithm and modularity for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 89-96.
    12. Jiang, Jianhua & Yang, Xi & Meng, Xianqiu & Li, Keqin, 2020. "Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Hao Long & Xiao-Wei Liu, 2019. "A Unified Community Detection Algorithm In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    14. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    15. Qian, Qian & Chao, Xiangrui & Feng, Hairong, 2023. "Internal or external control? How to respond to credit risk contagion in complex enterprises network," International Review of Financial Analysis, Elsevier, vol. 87(C).
    16. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Li, Mingming & Liu, Jing, 2018. "A link clustering based memetic algorithm for overlapping community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 410-423.
    18. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    19. Peng Wu & Li Pan, 2015. "Multi-Objective Community Detection Based on Memetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-31, May.
    20. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:74:y:2020:i:2:d:10.1007_s11235-019-00636-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.