IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p196-d1563175.html
   My bibliography  Save this article

A Method for Detecting Overlapping Protein Complexes Based on an Adaptive Improved FCM Clustering Algorithm

Author

Listed:
  • Caixia Wang

    (School of International Economics, China Foreign Affairs University, 24 Zhanlan Road, Xicheng District, Beijing 100037, China)

  • Rongquan Wang

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Kaiying Jiang

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China)

Abstract

A protein complex can be regarded as a functional module developed by interacting proteins. The protein complex has attracted significant attention in bioinformatics as a critical substance in life activities. Identifying protein complexes in protein–protein interaction (PPI) networks is vital in life sciences and biological activities. Therefore, significant efforts have been made recently in biological experimental methods and computing methods to detect protein complexes accurately. This study proposed a new method for PPI networks to facilitate the processing and development of the following algorithms. Then, a combination of the improved density peaks clustering algorithm (DPC) and the fuzzy C-means clustering algorithm (FCM) was proposed to overcome the shortcomings of the traditional FCM algorithm. In other words, the rationality of results obtained using the FCM algorithm is closely related to the selection of cluster centers. The objective function of the FCM algorithm was redesigned based on ‘high cohesion’ and ‘low coupling’. An adaptive parameter-adjusting algorithm was designed to optimize the parameters of the proposed detection algorithm. This algorithm is denoted as the DFPO algorithm (DPC-FCM Parameter Optimization). Finally, the performance of the DFPO algorithm was evaluated using multiple metrics and compared with over ten state-of-the-art protein complex detection algorithms. Experimental results indicate that the proposed DFPO algorithm exhibits improved detection accuracy compared with other algorithms.

Suggested Citation

  • Caixia Wang & Rongquan Wang & Kaiying Jiang, 2025. "A Method for Detecting Overlapping Protein Complexes Based on an Adaptive Improved FCM Clustering Algorithm," Mathematics, MDPI, vol. 13(2), pages 1-27, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:196-:d:1563175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Roger Guimerà & Luís A. Nunes Amaral, 2005. "Functional cartography of complex metabolic networks," Nature, Nature, vol. 433(7028), pages 895-900, February.
    3. Christian von Mering & Roland Krause & Berend Snel & Michael Cornell & Stephen G. Oliver & Stanley Fields & Peer Bork, 2002. "Comparative assessment of large-scale data sets of protein–protein interactions," Nature, Nature, vol. 417(6887), pages 399-403, May.
    4. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    5. Yuliang Pan & Diwei Liu & Lei Deng, 2017. "Accurate prediction of functional effects for variants by combining gradient tree boosting with optimal neighborhood properties," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    6. Nevan J. Krogan & Gerard Cagney & Haiyuan Yu & Gouqing Zhong & Xinghua Guo & Alexandr Ignatchenko & Joyce Li & Shuye Pu & Nira Datta & Aaron P. Tikuisis & Thanuja Punna & José M. Peregrín-Alvarez & Mi, 2006. "Global landscape of protein complexes in the yeast Saccharomyces cerevisiae," Nature, Nature, vol. 440(7084), pages 637-643, March.
    7. Anne-Claude Gavin & Patrick Aloy & Paola Grandi & Roland Krause & Markus Boesche & Martina Marzioch & Christina Rau & Lars Juhl Jensen & Sonja Bastuck & Birgit Dümpelfeld & Angela Edelmann & Marie-Ann, 2006. "Proteome survey reveals modularity of the yeast cell machinery," Nature, Nature, vol. 440(7084), pages 631-636, March.
    8. David Eisenberg & Edward M. Marcotte & Ioannis Xenarios & Todd O. Yeates, 2000. "Protein function in the post-genomic era," Nature, Nature, vol. 405(6788), pages 823-826, June.
    9. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    2. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    3. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    4. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    6. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    7. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 0. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 0, pages 1-12.
    8. Lan Huang & Guishen Wang & Yan Wang & Enrico Blanzieri & Chao Su, 2013. "Link Clustering with Extended Link Similarity and EQ Evaluation Division," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-18, June.
    9. Wang, Zhenwen & Hu, Yanli & Xiao, Weidong & Ge, Bin, 2013. "Overlapping community detection using a generative model for networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5218-5230.
    10. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    11. Wu, Jianshe & Lu, Rui & Jiao, Licheng & Liu, Fang & Yu, Xin & Wang, Da & Sun, Bo, 2013. "Phase transition model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1287-1301.
    12. Ma, Xiaoke & Gao, Lin & Yong, Xuerong & Fu, Lidong, 2010. "Semi-supervised clustering algorithm for community structure detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 187-197.
    13. Beiró, Mariano G. & Busch, Jorge R. & Grynberg, Sebastian P. & Alvarez-Hamelin, J. Ignacio, 2013. "Obtaining communities with a fitness growth process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2278-2293.
    14. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    15. Jie Zhao & Xiujuan Lei & Fang-Xiang Wu, 2017. "Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC," Complexity, Hindawi, vol. 2017, pages 1-11, August.
    16. Sun, Peng Gang, 2015. "Community detection by fuzzy clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 408-416.
    17. Supreet Mandala & Soundar Kumara & Kalyan Chatterjee, 2014. "A Game-Theoretic Approach to Graph Clustering," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 629-643, August.
    18. Bingjie Hao & István A. Kovács, 2023. "A positive statistical benchmark to assess network agreement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 2018. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 20(5), pages 1041-1052, October.
    20. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:196-:d:1563175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.