IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0023016.html
   My bibliography  Save this article

Dominating Biological Networks

Author

Listed:
  • Tijana Milenković
  • Vesna Memišević
  • Anthony Bonato
  • Nataša Pržulj

Abstract

Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI) networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of “biologically central (BC)” genes (i.e., their protein products), such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network. To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC) role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs) in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its “spine” that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

Suggested Citation

  • Tijana Milenković & Vesna Memišević & Anthony Bonato & Nataša Pržulj, 2011. "Dominating Biological Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0023016
    DOI: 10.1371/journal.pone.0023016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0023016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Uetz & Loic Giot & Gerard Cagney & Traci A. Mansfield & Richard S. Judson & James R. Knight & Daniel Lockshon & Vaibhav Narayan & Maithreyan Srinivasan & Pascale Pochart & Alia Qureshi-Emili & Y, 2000. "A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae," Nature, Nature, vol. 403(6770), pages 623-627, February.
    2. Anne-Claude Gavin & Markus Bösche & Roland Krause & Paola Grandi & Martina Marzioch & Andreas Bauer & Jörg Schultz & Jens M. Rick & Anne-Marie Michon & Cristina-Maria Cruciat & Marita Remor & Christia, 2002. "Functional organization of the yeast proteome by systematic analysis of protein complexes," Nature, Nature, vol. 415(6868), pages 141-147, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    2. Bingjie Hao & István A. Kovács, 2023. "A positive statistical benchmark to assess network agreement," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xionglei He & Jianzhi Zhang, 2006. "Why Do Hubs Tend to Be Essential in Protein Networks?," PLOS Genetics, Public Library of Science, vol. 2(6), pages 1-9, June.
    4. Ildefonso M De la Fuente & Fernando Vadillo & Alberto Luís Pérez-Samartín & Martín-Blas Pérez-Pinilla & Joseba Bidaurrazaga & Antonio Vera-López, 2010. "Global Self-Regulation of the Cellular Metabolic Structure," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-15, March.
    5. Abdolhosseini-Qomi, Amir Mahdi & Yazdani, Naser & Asadpour, Masoud, 2020. "Overlapping communities and the prediction of missing links in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    6. Erica W. Carter & Orlene Guerra Peraza & Nian Wang, 2023. "The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Takeshi Hase & Yoshihito Niimura & Tsuguchika Kaminuma & Hiroshi Tanaka, 2008. "Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-7, February.
    8. Lukas Käll & Olga Vitek, 2011. "Computational Mass Spectrometry–Based Proteomics," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-7, December.
    9. Jie Zhao & Xiujuan Lei & Fang-Xiang Wu, 2017. "Predicting Protein Complexes in Weighted Dynamic PPI Networks Based on ICSC," Complexity, Hindawi, vol. 2017, pages 1-11, August.
    10. Mu Gao & Davi Nakajima An & Jerry M. Parks & Jeffrey Skolnick, 2022. "AF2Complex predicts direct physical interactions in multimeric proteins with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Lv, Changchun & Yuan, Ziwei & Si, Shubin & Duan, Dongli & Yao, Shirui, 2022. "Cascading failure in networks with dynamical behavior against multi-node removal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Duan, Dongli & Yan, Qi & Rong, Yisheng & Hou, Gege, 2022. "Predicting the cascading failure of dynamical networks based on a new dimension reduction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0023016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.