IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/0020088.html
   My bibliography  Save this article

Why Do Hubs Tend to Be Essential in Protein Networks?

Author

Listed:
  • Xionglei He
  • Jianzhi Zhang

Abstract

The protein–protein interaction (PPI) network has a small number of highly connected protein nodes (known as hubs) and many poorly connected nodes. Genome-wide studies show that deletion of a hub protein is more likely to be lethal than deletion of a non-hub protein, a phenomenon known as the centrality-lethality rule. This rule is widely believed to reflect the special importance of hubs in organizing the network, which in turn suggests the biological significance of network architectures, a key notion of systems biology. Despite the popularity of this explanation, the underlying cause of the centrality-lethality rule has never been critically examined. We here propose the concept of essential PPIs, which are PPIs that are indispensable for the survival or reproduction of an organism. Our network analysis suggests that the centrality-lethality rule is unrelated to the network architecture, but is explained by the simple fact that hubs have large numbers of PPIs, therefore high probabilities of engaging in essential PPIs. We estimate that ~ 3% of PPIs are essential in the yeast, accounting for ~ 43% of essential genes. As expected, essential PPIs are evolutionarily more conserved than nonessential PPIs. Considering the role of essential PPIs in determining gene essentiality, we find the yeast PPI network functionally more robust than random networks, yet far less robust than the potential optimum. These and other findings provide new perspectives on the biological relevance of network structure and robustness.Synopsis: Proteins and their interactions form a protein–protein interaction network, where the proteins are the nodes and the interactions are the edges. Genomic studies show that deleting a highly connected protein node (hub) is more likely to be lethal to an organism than deleting a lowly connected node (non-hub), a phenomenon known as the centrality-lethality rule. Because hubs are more important than non-hubs in organizing the global network structure, the centrality-lethality rule is widely believed to reflect the significance of network architecture in determining network function, a key notion of systems biology. In this work, the authors proposed a small fraction of randomly distributed essential interactions, each of which is lethal to an organism when disrupted. Under this scenario, a hub is more likely to be essential than a non-hub simply because the hub has more interactions and thus a higher chance to engage in an essential interaction. Hence, the centrality-lethality rule is explained without the involvement of network architecture. Using yeast data, the authors provided empirical evidence supporting their hypothesis. Their proposal and results challenge a prevailing view in systems biology and provide a new perspective on the role of network structures in biology.

Suggested Citation

  • Xionglei He & Jianzhi Zhang, 2006. "Why Do Hubs Tend to Be Essential in Protein Networks?," PLOS Genetics, Public Library of Science, vol. 2(6), pages 1-9, June.
  • Handle: RePEc:plo:pgen00:0020088
    DOI: 10.1371/journal.pgen.0020088
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020088
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0020088&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.0020088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0020088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.