IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/0020088.html
   My bibliography  Save this article

Why Do Hubs Tend to Be Essential in Protein Networks?

Author

Listed:
  • Xionglei He
  • Jianzhi Zhang

Abstract

The protein–protein interaction (PPI) network has a small number of highly connected protein nodes (known as hubs) and many poorly connected nodes. Genome-wide studies show that deletion of a hub protein is more likely to be lethal than deletion of a non-hub protein, a phenomenon known as the centrality-lethality rule. This rule is widely believed to reflect the special importance of hubs in organizing the network, which in turn suggests the biological significance of network architectures, a key notion of systems biology. Despite the popularity of this explanation, the underlying cause of the centrality-lethality rule has never been critically examined. We here propose the concept of essential PPIs, which are PPIs that are indispensable for the survival or reproduction of an organism. Our network analysis suggests that the centrality-lethality rule is unrelated to the network architecture, but is explained by the simple fact that hubs have large numbers of PPIs, therefore high probabilities of engaging in essential PPIs. We estimate that ~ 3% of PPIs are essential in the yeast, accounting for ~ 43% of essential genes. As expected, essential PPIs are evolutionarily more conserved than nonessential PPIs. Considering the role of essential PPIs in determining gene essentiality, we find the yeast PPI network functionally more robust than random networks, yet far less robust than the potential optimum. These and other findings provide new perspectives on the biological relevance of network structure and robustness.Synopsis: Proteins and their interactions form a protein–protein interaction network, where the proteins are the nodes and the interactions are the edges. Genomic studies show that deleting a highly connected protein node (hub) is more likely to be lethal to an organism than deleting a lowly connected node (non-hub), a phenomenon known as the centrality-lethality rule. Because hubs are more important than non-hubs in organizing the global network structure, the centrality-lethality rule is widely believed to reflect the significance of network architecture in determining network function, a key notion of systems biology. In this work, the authors proposed a small fraction of randomly distributed essential interactions, each of which is lethal to an organism when disrupted. Under this scenario, a hub is more likely to be essential than a non-hub simply because the hub has more interactions and thus a higher chance to engage in an essential interaction. Hence, the centrality-lethality rule is explained without the involvement of network architecture. Using yeast data, the authors provided empirical evidence supporting their hypothesis. Their proposal and results challenge a prevailing view in systems biology and provide a new perspective on the role of network structures in biology.

Suggested Citation

  • Xionglei He & Jianzhi Zhang, 2006. "Why Do Hubs Tend to Be Essential in Protein Networks?," PLOS Genetics, Public Library of Science, vol. 2(6), pages 1-9, June.
  • Handle: RePEc:plo:pgen00:0020088
    DOI: 10.1371/journal.pgen.0020088
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020088
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0020088&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.0020088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenglong Gu & Lars M. Steinmetz & Xun Gu & Curt Scharfe & Ronald W. Davis & Wen-Hsiung Li, 2003. "Role of duplicate genes in genetic robustness against null mutations," Nature, Nature, vol. 421(6918), pages 63-66, January.
    2. Andreas Wagner, 2001. "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes," Working Papers 01-04-022, Santa Fe Institute.
    3. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    5. Anne-Claude Gavin & Markus Bösche & Roland Krause & Paola Grandi & Martina Marzioch & Andreas Bauer & Jörg Schultz & Jens M. Rick & Anne-Marie Michon & Cristina-Maria Cruciat & Marita Remor & Christia, 2002. "Functional organization of the yeast proteome by systematic analysis of protein complexes," Nature, Nature, vol. 415(6868), pages 141-147, January.
    6. Jing-Dong J. Han & Nicolas Bertin & Tong Hao & Debra S. Goldberg & Gabriel F. Berriz & Lan V. Zhang & Denis Dupuy & Albertha J. M. Walhout & Michael E. Cusick & Frederick P. Roth & Marc Vidal, 2004. "Evidence for dynamically organized modularity in the yeast protein–protein interaction network," Nature, Nature, vol. 430(6995), pages 88-93, July.
    7. Balázs Papp & Csaba Pál & Laurence D. Hurst, 2004. "Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast," Nature, Nature, vol. 429(6992), pages 661-664, June.
    8. Ravi S. Kamath & Andrew G. Fraser & Yan Dong & Gino Poulin & Richard Durbin & Monica Gotta & Alexander Kanapin & Nathalie Le Bot & Sergio Moreno & Marc Sohrmann & David P. Welchman & Peder Zipperlen &, 2003. "Systematic functional analysis of the Caenorhabditis elegans genome using RNAi," Nature, Nature, vol. 421(6920), pages 231-237, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorothea Emig & Alexander Ivliev & Olga Pustovalova & Lee Lancashire & Svetlana Bureeva & Yuri Nikolsky & Marina Bessarabova, 2013. "Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshi Hase & Yoshihito Niimura & Tsuguchika Kaminuma & Hiroshi Tanaka, 2008. "Non-Uniform Survival Rate of Heterodimerization Links in the Evolution of the Yeast Protein-Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-7, February.
    2. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    3. Peter Langfelder & Paul S Mischel & Steve Horvath, 2013. "When Is Hub Gene Selection Better than Standard Meta-Analysis?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    4. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    5. Gao, Jianbo & Hu, Jing, 2014. "Financial crisis, Omori's law, and negative entropy flow," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 79-86.
    6. Gitanjali Yadav & Suresh Babu, 2012. "NEXCADE: Perturbation Analysis for Complex Networks," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    7. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    8. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    9. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    10. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    11. Demetrius, Lloyd & Manke, Thomas, 2005. "Robustness and network evolution—an entropic principle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 682-696.
    12. Mustafa C. Camur & Thomas Sharkey & Chrysafis Vogiatzis, 2022. "The Star Degree Centrality Problem: A Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 93-112, January.
    13. Dan Braha & Yaneer Bar-Yam, 2004. "Information Flow Structure in Large-Scale Product Development Organizational Networks," Industrial Organization 0407012, University Library of Munich, Germany.
    14. Gao, Yuyang & Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Comparison of directed and weighted co-occurrence networks of six languages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 579-589.
    15. Yong He & Jinhui Wang & Liang Wang & Zhang J Chen & Chaogan Yan & Hong Yang & Hehan Tang & Chaozhe Zhu & Qiyong Gong & Yufeng Zang & Alan C Evans, 2009. "Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-18, April.
    16. Serra, Roberto & Villani, Marco & Agostini, Luca, 2004. "On the dynamics of random Boolean networks with scale-free outgoing connections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(3), pages 665-673.
    17. Chrysafis Vogiatzis & Mustafa Can Camur, 2019. "Identification of Essential Proteins Using Induced Stars in Protein–Protein Interaction Networks," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 703-718, October.
    18. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    19. Xia Cao & Chuanyun Li & Wei Chen & Jinqiu Li & Chaoran Lin, 2020. "Research on the invulnerability and optimization of the technical cooperation innovation network based on the patent perspective—A case study of new energy vehicles," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-19, September.
    20. Sun, Lanfang & Jiang, Lu & Li, Menghui & He, Dacheng, 2006. "Statistical analysis of gene regulatory networks reconstructed from gene expression data of lung cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 663-671.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0020088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.