IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2516742.html
   My bibliography  Save this article

Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks

Author

Listed:
  • Ying Duan
  • Xiuwen Fu
  • Wenfeng Li
  • Yu Zhang
  • Giancarlo Fortino

Abstract

Scale-free network and small-world network are the most impacting discoveries in the complex networks theories and have already been successfully proved to be highly effective in improving topology structures of wireless sensor networks. However, currently both theories are not jointly applied to have further improvements in the generation of WSN topologies. Therefore, this paper proposes a cluster-structured evolution model of WSNs considering the characteristics of both networks. With introduction of energy sensitivity and maximum limitation of degrees that a cluster head could have, the performance of our model can be ensured. In order to give an overall assessment of lifting effects of shortcuts, four placement schemes of shortcuts are analyzed. The characteristics of small-world network and scale-free network of our model are proved via theoretical derivation and simulations. Besides, we find that, by introducing shortcuts into scale-free wireless sensor network, the performance of the network can be improved concerning energy-saving and invulnerability, and we discover that the schemes constructing shortcuts between cluster heads and the sink node have better promoted effects than the scheme building shortcuts between pairs of cluster heads, and the schemes based on the preferential principle are superior to the schemes based on the random principle.

Suggested Citation

  • Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
  • Handle: RePEc:hin:complx:2516742
    DOI: 10.1155/2017/2516742
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/2516742.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/2516742.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2516742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Hailin & Luo, Hong & Peng, Haipeng & Li, Lixiang & Luo, Qun, 2009. "Complex networks-based energy-efficient evolution model for wireless sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1828-1835.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Li, Shudong & Li, Lixiang & Yang, Yixian, 2011. "A local-world heterogeneous model of wireless sensor networks with node and link diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1182-1191.
    4. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    5. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong, Chong-Wei & Tang, Ming & Wang, Xiao-Hua & Liu, Ying & Shi, Jia, 2022. "Evolution model of high quality of service for spatial heterogeneous wireless sensor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Xiuwen Fu & Haiqing Yao & Yongsheng Yang, 2019. "Sink-Convergence Cascading Model for Wireless Sensor Networks with Different Load-Redistribution Schemes," Complexity, Hindawi, vol. 2019, pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xiaojuan & Hu, Yuhen & Zhu, Yu, 2014. "Topology evolution model for wireless multi-hop network based on socially inspired mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 639-650.
    2. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    3. Santiago, A. & Benito, R.M., 2009. "Robustness of heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2234-2242.
    4. Chen, Chen & Lu, Jun-an & Wu, Xiaoqun, 2010. "Complex networks constructed from irrational number sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2654-2662.
    5. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.
    6. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    7. Xiong, Chong-Wei & Tang, Ming & Wang, Xiao-Hua & Liu, Ying & Shi, Jia, 2022. "Evolution model of high quality of service for spatial heterogeneous wireless sensor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    8. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    9. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    10. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    11. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    12. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    13. Prasanna Gai & Sujit Kapadia, 2011. "A Network Model of Super-Systemic Crises," Central Banking, Analysis, and Economic Policies Book Series, in: Rodrigo Alfaro (ed.),Financial Stability, Monetary Policy, and Central Banking, edition 1, volume 15, chapter 13, pages 411-432, Central Bank of Chile.
    14. Selen Onel & Abe Zeid & Sagar Kamarthi, 2011. "The structure and analysis of nanotechnology co-author and citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 119-138, October.
    15. Qingmin Hao & Jim Huangnan Shen & Chien-Chiang Lee, 2023. "Risk contagion of bank-firm loan network: evidence from China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 341-361, June.
    16. Kashyap, G. & Ambika, G., 2019. "Link deletion in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 631-643.
    17. Santiago, A. & Benito, R.M., 2008. "Connectivity degrees in the threshold preferential attachment model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2365-2376.
    18. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    19. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    20. Gordana Apic & Matthew J Betts & Robert B Russell, 2011. "Content Disputes in Wikipedia Reflect Geopolitical Instability," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-5, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2516742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.