IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v45y2014i7p1427-1450.html
   My bibliography  Save this article

Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays

Author

Listed:
  • L. Jarina Banu
  • P. Balasubramaniam

Abstract

This paper deals with the synchronisation problem for an array of coupled complex discrete-time networks with the presence of randomly occurring information. The time-varying delays, parameter uncertainties and nonlinearities enter into the system in a random way and such randomly occurring time-delays, randomly occurring uncertainties and randomly occurring sector-like nonlinearities obey certain mutually uncorrelated Bernoulli-distributed white-noise sequences. By employing direct delay decomposition approach and constructing suitable Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the synchronisation criteria for the complex networks with randomly occurring information in terms of linear matrix inequalities. Finally, in numerical examples, synchronisation of Barabàsi Albert scale-free networks and chaotic synchronisation of Lorenz system are rendered to exemplify the effectiveness and applicability of the proposed results.

Suggested Citation

  • L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
  • Handle: RePEc:taf:tsysxx:v:45:y:2014:i:7:p:1427-1450
    DOI: 10.1080/00207721.2013.844287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.844287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.844287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. H. Park & S. M. Lee & H. Y. Jung, 2009. "LMI Optimization Approach to Synchronization of Stochastic Delayed Discrete-Time Complex Networks," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 357-367, November.
    2. Yisha Liu & Zidong Wang & Wei Wang, 2011. "Reliable control for discrete uncertain time-delay systems with randomly occurring nonlinearities: the output feedback case," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(5), pages 809-820.
    3. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    2. Liu, Z.X. & Chen, Z.Q. & Yuan, Z.Z., 2007. "Pinning control of weighted general complex dynamical networks with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 345-354.
    3. Liu, Tao & Zhao, Jun & Hill, David J., 2009. "Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1506-1519.
    4. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    5. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    6. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    7. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    8. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    9. Santiago, A. & Benito, R.M., 2008. "Connectivity degrees in the threshold preferential attachment model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2365-2376.
    10. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    11. Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
    12. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    13. Liu, Xiwei & Chen, Tianping, 2007. "Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 82-92.
    14. Santiago, A. & Benito, R.M., 2009. "Robustness of heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2234-2242.
    15. Eocman Lee & Jeho Lee & Jongseok Lee, 2006. "Reconsideration of the Winner-Take-All Hypothesis: Complex Networks and Local Bias," Management Science, INFORMS, vol. 52(12), pages 1838-1848, December.
    16. Dai, Yang & Cai, Yunze & Xu, Xiaoming, 2008. "Synchronization criteria for complex dynamical networks with neutral-type coupling delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4673-4682.
    17. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    18. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    19. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:7:p:1427-1450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.