IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0207865.html
   My bibliography  Save this article

The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions

Author

Listed:
  • Wouter Vermeer
  • Otto Koppius
  • Peter Vervest

Abstract

Propagating phenomena in networks have received significant amount of attention within various domains, ranging from contagion in epidemiology, to diffusion of innovations and social influence on behavior and communication. Often these studies attempt to model propagation processes in networks to create interventions that steer propagation dynamics towards desired or away from undesired outcomes. Traditionally, studies have used relatively simple models of the propagation mechanism. In most propagation models this mechanism is described as a monolithic process and a single parameter for the infection rate. Such a description of the propagation mechanism is a severe simplification of mechanisms described in various theoretical exchange theories and phenomena found in real world settings, and largely fails to capture the nuances present in such descriptions. Recent work has suggested that such a simplification may not be sufficient to explain observed propagation dynamics, as nuances of the mechanism of propagation can have a severe impact on its dynamics. This suggests a better understanding of the role of the propagation mechanism is desired. In this paper we put forward a novel framework and model for propagation, the RTR framework. This framework, based on communication theory, decomposes the propagation mechanism into three sub-processes; Radiation, Transmission and Reception (RTR). We show that the RTR framework provides a more detailed way for specifying and conceptually thinking about the process of propagation, aligns better with existing real world interventions, and allows for gaining new insights into effective intervention strategies. By decomposing the propagation mechanism, we show that the specifications of this mechanism can have significant impact on the effectiveness of network interventions. We show that for the same composite single-parameter specification, different decompositions in Radiation, Transmission and Reception yield very different effectiveness estimates for the same network intervention, from 30% less effective to 70% more effective. We find that the appropriate choice for intervention depends strongly on the decomposition of the propagation mechanism. Our findings highlight that a correct decomposition of the mechanism is a prerequisite for developing effective network intervention strategies, and that the use of monolithic models, which oversimplify the mechanism, can be problematic of supporting decisions related to network interventions. In contrast, by allowing more detailed specification of the propagation mechanism and enabling this mechanism to be linked to existing interventions, the RTR framework provides a valuable tool for those designing interventions and implementing interventions strategies.

Suggested Citation

  • Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
  • Handle: RePEc:plo:pone00:0207865
    DOI: 10.1371/journal.pone.0207865
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207865
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207865&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0207865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sen Pei & Lev Muchnik & Shaoting Tang & Zhiming Zheng & Hernán A Makse, 2015. "Exploring the Complex Pattern of Information Spreading in Online Blog Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-18, May.
    2. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    3. Wang, Jiannan & Guo, Binghui & Wei, Wei & Mi, Zhilong & Yin, Ziqiao & Zheng, Zhiming, 2017. "The stability of Boolean network with transmission sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 70-78.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Buzna, Lubos & Peters, Karsten & Helbing, Dirk, 2006. "Modelling the dynamics of disaster spreading in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 132-140.
    6. Preis, Tobias & Bardoscia, Marco & Caccioli, Fabio & Perotti, Juan Ignacio & Vivaldo, Gianna & Caldarelli, Guido, 2016. "Distress propagation in complex networks: the case of non-linear DebtRank," LSE Research Online Documents on Economics 68598, London School of Economics and Political Science, LSE Library.
    7. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    8. Aral, Sinan & Muchnik, Lev & Sundararajan, Arun, 2013. "Engineering social contagions: Optimal network seeding in the presence of homophily," Network Science, Cambridge University Press, vol. 1(2), pages 125-153, August.
    9. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    10. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    11. Didier SORNETTE, 2009. "Dragon-Kings, Black Swans and the Prediction of Crises," Swiss Finance Institute Research Paper Series 09-36, Swiss Finance Institute.
    12. D. Sornette, "undated". "Dragon-Kings, Black Swans and the Prediction of Crises," Working Papers CCSS-09-005, ETH Zurich, Chair of Systems Design.
    13. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    14. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    15. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    16. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    17. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    18. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2015. "Distress propagation in complex networks: the case of non-linear DebtRank," Papers 1512.04460, arXiv.org, revised Sep 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    2. Daniel Grigat & Fabio Caccioli, 2017. "Reverse stress testing interbank networks," Papers 1702.08744, arXiv.org, revised Mar 2017.
    3. Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
    4. Cao, Jie & Wen, Fenghua & Stanley, H. Eugene & Wang, Xiong, 2021. "Multilayer financial networks and systemic importance: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 78(C).
    5. Alessandro Ferracci & Giulio Cimini, 2021. "Systemic risk in interbank networks: disentangling balance sheets and network effects," Papers 2109.14360, arXiv.org, revised Sep 2022.
    6. Luitgard Anna Maria Veraart, 2020. "Distress and default contagion in financial networks," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 705-737, July.
    7. Fabio Caccioli & Paolo Barucca & Teruyoshi Kobayashi, 2018. "Network models of financial systemic risk: a review," Journal of Computational Social Science, Springer, vol. 1(1), pages 81-114, January.
    8. Ashish Kumar & Anindya S. Chakrabarti & Anirban Chakraborti & Tushar Nandi, 2020. "Distress propagation on production networks: Coarse-graining and modularity of linkages," Papers 2004.14485, arXiv.org.
    9. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    10. Ramadiah, Amanah & Fricke, Daniel & Caccioli, Fabio, 2022. "Backtesting macroprudential stress tests," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    11. Kumar, Ashish & Chakrabarti, Anindya S. & Chakraborti, Anirban & Nandi, Tushar, 2021. "Distress propagation on production networks: Coarse-graining and modularity of linkages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    12. Guseo, Renato & Guidolin, Mariangela, 2010. "Cellular Automata with network incubation in information technology diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2422-2433.
    13. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    14. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    15. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    16. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    17. Bardoscia, Marco & Ka-Kay Pang, Raymond, 2023. "Ring-fencing in financial networks," Bank of England working papers 1046, Bank of England.
    18. He, Xiang & Yuan, Yongbo, 2022. "Revisiting driving factor influences on uncertain cascading disaster evolutions: From perspective of global sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    19. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    20. Chen, Yu & Jin, Shuyue & Wang, Xiasi, 2021. "Solvency contagion risk in the Chinese commercial banks’ network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.