IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp639-650.html
   My bibliography  Save this article

Topology evolution model for wireless multi-hop network based on socially inspired mechanism

Author

Listed:
  • Luo, Xiaojuan
  • Hu, Yuhen
  • Zhu, Yu

Abstract

In this paper, topology evolution problem is addressed for improving the network performance in wireless multi-hop networks. A novel topology model based on social inspired mechanism with energy-aware and local-world features is proposed to handle the time-varying nature of wireless multi-hop network. A series of theoretical analysis and numerical simulation to the social inspired evolution network are conducted. Firstly, the degree distribution of this social inspired model represents a transition between exponential to power-law scaling with increasing the local world scale. Secondly, the clustering coefficient and the average path length decrease sharply as generally local-world scale increases a little. Finally, we found that the robustness and fragility of the proposed network model against random failures and attacks also display a transition between the random and the scale-free ones when the scale of local-world increasing. This local-world social inspired network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks.

Suggested Citation

  • Luo, Xiaojuan & Hu, Yuhen & Zhu, Yu, 2014. "Topology evolution model for wireless multi-hop network based on socially inspired mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 639-650.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:639-650
    DOI: 10.1016/j.physa.2014.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007912
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Hailin & Luo, Hong & Peng, Haipeng & Li, Lixiang & Luo, Qun, 2009. "Complex networks-based energy-efficient evolution model for wireless sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1828-1835.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    4. Li, Shudong & Li, Lixiang & Yang, Yixian, 2011. "A local-world heterogeneous model of wireless sensor networks with node and link diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1182-1191.
    5. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    6. Maslov, Sergei & Sneppen, Kim & Zaliznyak, Alexei, 2004. "Detection of topological patterns in complex networks: correlation profile of the internet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 529-540.
    7. Li, Xiang & Chen, Guanrong, 2003. "A local-world evolving network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 328(1), pages 274-286.
    8. González-Parra, Gilberto & Acedo, L. & Villanueva Micó, Rafael-J. & Arenas, Abraham J., 2010. "Modeling the social obesity epidemic with stochastic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3692-3701.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
    2. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    4. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    5. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    6. Heath Henderson & Arnob Alam, 2022. "The structure of risk-sharing networks," Empirical Economics, Springer, vol. 62(2), pages 853-886, February.
    7. Chen, Qinghua & Shi, Dinghua, 2006. "Markov chains theory for scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 121-133.
    8. Jiang, Nan, 2014. "WDEM: Weighted dynamics and evolution models for energy-constrained wireless sensor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 323-331.
    9. Xiong, Chong-Wei & Tang, Ming & Wang, Xiao-Hua & Liu, Ying & Shi, Jia, 2022. "Evolution model of high quality of service for spatial heterogeneous wireless sensor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    10. Huang, Xikun & Lu, Ruqian, 2020. "An evolving network model with information filtering and mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Zhu, Hailin & Luo, Hong & Peng, Haipeng & Li, Lixiang & Luo, Qun, 2009. "Complex networks-based energy-efficient evolution model for wireless sensor networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1828-1835.
    12. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    13. Biggiero, Lucio & Angelini, Pier Paolo, 2015. "Hunting scale-free properties in R&D collaboration networks: Self-organization, power-law and policy issues in the European aerospace research area," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 21-43.
    14. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    15. Dávid Csercsik & Sándor Imre, 2017. "Cooperation and coalitional stability in decentralized wireless networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(4), pages 571-584, April.
    16. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    17. Chung-Yuan Huang & Chuen-Tsai Sun & Hsun-Cheng Lin, 2005. "Influence of Local Information on Social Simulations in Small-World Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-8.
    18. Wang, Jianrong & Wang, Jianping & Han, Dun, 2017. "Nonlinear dynamic evolution and control in CCFN with mixed attachment mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 120-132.
    19. He, Xuan & Zhao, Hai & Cai, Wei & Li, Guang-Guang & Pei, Fan-Dong, 2015. "Analyzing the structure of earthquake network by k-core decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 34-43.
    20. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:639-650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.