IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i10p2365-2376.html
   My bibliography  Save this article

Connectivity degrees in the threshold preferential attachment model

Author

Listed:
  • Santiago, A.
  • Benito, R.M.

Abstract

In this paper we present a study of the connectivity degrees of the threshold preferential attachment model, a generalization of the Barabási–Albert model to heterogeneous complex networks. The threshold model incorporates the states of the nodes in its preferential linking rule and assumes that the affinity between network nodes follows an inverse relationship with the distance between their states. We numerically analyze the connectivity degrees of the model, studying the influence of the main parameters on the distribution of connectivity degrees and its statistics, the average degree and highest degree of the network. We show that such statistics exhibit markedly different behaviors in the dependence on the model parameters, particularly as regards the interaction threshold. Nevertheless, we show that the two statistics converge in the limit of null threshold and often exhibit scaling that can be described by power laws of the model parameters.

Suggested Citation

  • Santiago, A. & Benito, R.M., 2008. "Connectivity degrees in the threshold preferential attachment model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(10), pages 2365-2376.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:10:p:2365-2376
    DOI: 10.1016/j.physa.2007.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843710701299X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Wu, Fang & Huberman, Bernardo A. & Adamic, Lada A. & Tyler, Joshua R., 2004. "Information flow in social groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 327-335.
    3. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    4. A. Santiago & R. M. Benito, 2007. "Emergence Of Multiscaling In Heterogeneous Complex Networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(10), pages 1591-1607.
    5. Ergün, G. & Rodgers, G.J., 2002. "Growing random networks with fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 261-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martín-Rojas, Rodrigo & García-Morales, Victor J. & Garrido-Moreno, Aurora & Salmador-Sánchez, Maria Paz, 2021. "Social Media Use and the Challenge of Complexity: Evidence from the Technology Sector," Journal of Business Research, Elsevier, vol. 129(C), pages 621-640.
    2. Mary Han & Bill McKelvey, 2016. "How to Grow Successful Social Entrepreneurship Firms? Key Ideas from Complexity Theory," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 24(03), pages 243-280, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santiago, A. & Benito, R.M., 2009. "Local affinity in heterogeneous growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(14), pages 2941-2948.
    2. Santiago, A. & Benito, R.M., 2009. "Robustness of heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2234-2242.
    3. Colizza, Vittoria & Flammini, Alessandro & Maritan, Amos & Vespignani, Alessandro, 2005. "Characterization and modeling of protein–protein interaction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 1-27.
    4. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    5. L. Jarina Banu & P. Balasubramaniam, 2014. "Synchronisation of discrete-time complex networks with randomly occurring uncertainties, nonlinearities and time-delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(7), pages 1427-1450, July.
    6. Chen, Qinghua & Shi, Dinghua, 2004. "The modeling of scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 240-248.
    7. Kii, Masanobu & Akimoto, Keigo & Doi, Kenji, 2012. "Random-growth urban model with geographical fitness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5960-5970.
    8. Chen, Qinghua & Chen, Shenghui, 2007. "A highly clustered scale-free network evolved by random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 773-781.
    9. Zheng, Xiaolong & Zeng, Daniel & Li, Huiqian & Wang, Feiyue, 2008. "Analyzing open-source software systems as complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6190-6200.
    10. Ying Duan & Xiuwen Fu & Wenfeng Li & Yu Zhang & Giancarlo Fortino, 2017. "Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks," Complexity, Hindawi, vol. 2017, pages 1-15, July.
    11. Claes Andersson & Koen Frenken & Alexander Hellervik, 2006. "A Complex Network Approach to Urban Growth," Environment and Planning A, , vol. 38(10), pages 1941-1964, October.
    12. Ikeda, N., 2007. "Network formed by traces of random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 701-713.
    13. Liu, Tao & Dimirovski, Georgi M. & Zhao, Jun, 2008. "Exponential synchronization of complex delayed dynamical networks with general topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 643-652.
    14. Eocman Lee & Jeho Lee & Jongseok Lee, 2006. "Reconsideration of the Winner-Take-All Hypothesis: Complex Networks and Local Bias," Management Science, INFORMS, vol. 52(12), pages 1838-1848, December.
    15. Li, Chunguang & Chen, Guanrong, 2004. "Synchronization in general complex dynamical networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 263-278.
    16. Liu, Z.X. & Chen, Z.Q. & Yuan, Z.Z., 2007. "Pinning control of weighted general complex dynamical networks with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 345-354.
    17. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    18. Daniel Straulino & Mattie Landman & Neave O'Clery, 2020. "A bi-directional approach to comparing the modular structure of networks," Papers 2010.06568, arXiv.org.
    19. Reppas, Andreas I. & Spiliotis, Konstantinos & Siettos, Constantinos I., 2015. "Tuning the average path length of complex networks and its influence to the emergent dynamics of the majority-rule model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 186-196.
    20. Ni, Shunjiang & Weng, Wenguo & Zhang, Hui, 2011. "Modeling the effects of social impact on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4528-4534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:10:p:2365-2376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.