IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p1060-d101964.html
   My bibliography  Save this article

Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users

Author

Listed:
  • Yeran Sun

    (Urban Big Data Centre, School of Social and Political Sciences, University of Glasgow, Glasgow G12 8RZ, UK)

  • Amin Mobasheri

    (GIScience Research Group, Institute of Geography, Heidelberg University, D-69120 Heidelberg, Germany)

  • Xuke Hu

    (GIScience Research Group, Institute of Geography, Heidelberg University, D-69120 Heidelberg, Germany)

  • Weikai Wang

    (Urban Studies, School of Social and Political Sciences, University of Glasgow, Glasgow G12 8RS, UK)

Abstract

As it is widely accepted, cycling tends to produce health benefits and reduce air pollution. Policymakers encourage people to use bikes by improving cycling facilities as well as developing bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems tend to be different from regular cyclists. Although earlier studies have examined effects of safety and convenience on the cycling behavior of regular riders, they rarely explored effects of safety and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling for other environmental factors. Specifically, in this study, we investigated the impacts of environmental characteristics, including population density, employment density, land use mix, accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a more accurate measure of public transit accessibility, road safety, convenience, and public safety, we used spatiotemporally varying measurements instead of spatially varying measurements, which have been widely used in earlier studies. We conducted an empirical investigation in Chicago with cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes, public transit accessibility, and public safety influence the usage of BSS, which provides answers for our research questions. Empirical results also suggest policy implications that improving bicycle facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover, some environmental factors could be considered in selecting a site for a new docking station.

Suggested Citation

  • Yeran Sun & Amin Mobasheri & Xuke Hu & Weikai Wang, 2017. "Investigating Impacts of Environmental Factors on the Cycling Behavior of Bicycle-Sharing Users," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1060-:d:101964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/1060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/1060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ann Forsyth & Kevin Krizek, 2011. "Urban Design: Is there a Distinctive View from the Bicycle?," Journal of Urban Design, Taylor & Francis Journals, vol. 16(04), pages 531-549.
    2. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    3. Griffin, Greg Phillip & Jiao, Junfeng, 2015. "Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus," SocArXiv 5gy3u, Center for Open Science.
    4. J. Hunt & J. Abraham, 2007. "Influences on bicycle use," Transportation, Springer, vol. 34(4), pages 453-470, July.
    5. Larsen, K. & Gilliland, J. & Hess, P. & Tucker, P. & Irwin, J. & He, M., 2009. "The influence of the physical environment and sociodemographic characteristics on children's mode of travel to and from school," American Journal of Public Health, American Public Health Association, vol. 99(3), pages 520-526.
    6. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    7. Pucher, J. & Buehler, R. & Bassett, D.R. & Dannenberg, A.L., 2010. "Walking and cycling to health: A comparative analysis of city, state, and international data," American Journal of Public Health, American Public Health Association, vol. 100(10), pages 1986-1992.
    8. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    9. Cristina Taddei & Roberto Gnesotto & Silvia Forni & Guglielmo Bonaccorsi & Andrea Vannucci & Giorgio Garofalo, 2015. "Cycling Promotion and Non-Communicable Disease Prevention: Health Impact Assessment and Economic Evaluation of Cycling to Work or School in Florence," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-22, April.
    10. Shaheen, Susan PhD & Martin, Elliot PhD & Cohen, Adam, 2013. "Public Bikesharing and Modal Shift Behavior: A Comparative Study of Early Bikesharing Systems in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7010k9p3, Institute of Transportation Studies, UC Berkeley.
    11. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    12. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    13. Maizlish, N. & Woodcock, J. & Co, S. & Ostro, B. & Fanai, A. & Fairley, D., 2013. "Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 703-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    2. Maas, Suzanne & Attard, Maria & Caruana, Mark Anthony, 2020. "Assessing spatial and social dimensions of shared bicycle use in a Southern European island context: The case of Las Palmas de Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 81-97.
    3. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    4. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    5. Mahdi Rashidi & Seyed-Mohammad Seyedhosseini & Ali Naderan, 2023. "Defining Psychological Factors of Cycling in Tehran City," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    6. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    7. Yuanyuan Zhang & Yuming Zhang, 2018. "Associations between Public Transit Usage and Bikesharing Behaviors in The United States," Sustainability, MDPI, vol. 10(6), pages 1-20, June.
    8. Wafa Elias & Victoria Gitelman, 2018. "Youngsters’ Opinions and Attitudes toward the Use of Electric Bicycles in Israel," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    9. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    10. Jin Zhang & Wenquan Li & Guoqing Wang & Jingcai Yu, 2021. "Feasibility Study of Transferring Shared Bicycle Users with Commuting Demand to Flex-Route Transit—A Case Study of Nanjing City, China," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    11. Mark Livingston & David McArthur & Jinhyun Hong & Kirstie English, 2021. "Predicting cycling volumes using crowdsourced activity data," Environment and Planning B, , vol. 48(5), pages 1228-1244, June.
    12. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    13. Schimohr, Katja & Scheiner, Joachim, 2021. "Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption," Journal of Transport Geography, Elsevier, vol. 92(C).
    14. Xiaoshu Cao & Feiwen Liang & Huiling Chen & Yongwei Liu, 2017. "Circuity Characteristics of Urban Travel Based on GPS Data: A Case Study of Guangzhou," Sustainability, MDPI, vol. 9(11), pages 1-21, November.
    15. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    16. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    17. Hamid Mostofi & Houshmand Masoumi & Hans-Liudger Dienel, 2020. "The Association between the Regular Use of ICT Based Mobility Services and the Bicycle Mode Choice in Tehran and Cairo," IJERPH, MDPI, vol. 17(23), pages 1-19, November.
    18. Mohammad Paydar & Asal Kamani Fard, 2021. "The Contribution of Mobile Apps to the Improvement of Walking/Cycling Behavior Considering the Impacts of COVID-19 Pandemic," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    19. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    20. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeran Sun & Yunyan Du & Yu Wang & Liyuan Zhuang, 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data," IJERPH, MDPI, vol. 14(6), pages 1-12, June.
    2. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Yeran Sun & Amin Mobasheri, 2017. "Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    4. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    5. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    6. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    7. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    8. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    9. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    10. Yang, Yuanxuan & Beecham, Roger & Heppenstall, Alison & Turner, Andy & Comber, Alexis, 2022. "Understanding the impacts of public transit disruptions on bikeshare schemes and cycling behaviours using spatiotemporal and graph-based analysis: A case study of four London Tube strikes," Journal of Transport Geography, Elsevier, vol. 98(C).
    11. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    12. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Yanjie Ji & Xinwei Ma & Mingyuan Yang & Yuchuan Jin & Liangpeng Gao, 2018. "Exploring Spatially Varying Influences on Metro-Bikeshare Transfer: A Geographically Weighted Poisson Regression Approach," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    14. Wang, Kailai & Akar, Gulsah & Chen, Yu-Jen, 2018. "Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 1-14.
    15. Bakó, Barna & Berezvai, Zombor & Isztin, Péter & Vigh, Enikő Zita, 2020. "Does Uber affect bicycle-sharing usage? Evidence from a natural experiment in Budapest," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 290-302.
    16. Maas, Suzanne & Attard, Maria & Caruana, Mark Anthony, 2020. "Assessing spatial and social dimensions of shared bicycle use in a Southern European island context: The case of Las Palmas de Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 81-97.
    17. Wang, Kailai & Chen, Yu-Jen, 2020. "Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions," Journal of Transport Geography, Elsevier, vol. 82(C).
    18. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    19. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    20. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:1060-:d:101964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.