IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p500-d476104.html
   My bibliography  Save this article

Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data

Author

Listed:
  • De Zhao

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

  • Ghim Ping Ong

    (Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore)

  • Wei Wang

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

  • Wei Zhou

    (Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, Nanjing 210096, China
    School of Transportation, Southeast University, Nanjing 210096, China)

Abstract

A reliable estimation of public bicycle trip characteristics, especially trip distribution and duration, can help decision-makers plan for the relevant transport infrastructures and assist operators in addressing issues related to bicycle imbalance. Past research studies have attempted to understand the relationship between public bicycle trip generation, trip attraction and factors such as built environment, weather, population density, etc. However, these studies typically did not include trip distribution, duration, and detailed information on the built environment. This paper aims to estimate public bicycle daily trip characteristics, i.e., trip generation, trip attraction, trip distribution, and duration using points of interest and smart card data from Nanjing, China. Negative binomial regression models were developed to examine the effect of built environment on public bicycle usage. Totally fifteen types of points of interest (POIs) data are investigated and factors such as residence, employment, entertainment, and metro station are found to be statistically significant. The results showed that 300 m buffer POIs of residence, employment, entertainment, restaurant, bus stop, metro station, amenity, and school have significantly positive effects on public bicycle generation and attraction, while, counterintuitively, 300 m buffer POIs of shopping, parks, attractions, sports, and hospital have significantly negative effects. Specifically, an increase of 1% in the trip distance leads to a 2.36% decrease in the origin-destination (OD) trips or a 0.54% increase of the trip duration. We also found that a 1% increase in the number of other nearby stations can help reduce 0.19% of the OD trips. The results from this paper can offer useful insights to operators in better estimating public bicycle usage and providing reliable services that can improve ridership.

Suggested Citation

  • De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:500-:d:476104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    2. Corcoran, Jonathan & Li, Tiebei & Rohde, David & Charles-Edwards, Elin & Mateo-Babiano, Derlie, 2014. "Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 292-305.
    3. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    4. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    5. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    6. Médard de Chardon, Cyrille & Caruso, Geoffrey, 2015. "Estimating bike-share trips using station level data," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 260-279.
    7. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    8. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    9. Zhang, Ying & Thomas, Tom & Brussel, Mark & van Maarseveen, Martin, 2017. "Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China," Journal of Transport Geography, Elsevier, vol. 58(C), pages 59-70.
    10. Advait Sarkar & Neal Lathia & Cecilia Mascolo, 2015. "Comparing cities’ cycling patterns using online shared bicycle maps," Transportation, Springer, vol. 42(4), pages 541-559, July.
    11. Noland, Robert B. & Smart, Michael J. & Guo, Ziye, 2016. "Bikeshare trip generation in New York City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 164-181.
    12. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    13. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    14. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    15. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    16. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    17. Mingzhu Song & Kaiping Wang & Yi Zhang & Meng Li & He Qi & Yi Zhang, 2020. "Impact Evaluation of Bike-Sharing on Bicycling Accessibility," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arias-Molinares, Daniela & Xu, Yihan & Büttner, Benjamin & Duran-Rodas, David, 2023. "Exploring key spatial determinants for mobility hub placement based on micromobility ridership," Journal of Transport Geography, Elsevier, vol. 110(C).
    2. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2023. "Does bike-share enhance transport equity? Evidence from the Sacramento, California region," Journal of Transport Geography, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    2. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    3. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    4. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    5. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    6. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    7. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    8. Wang, Yacan & Li, Jingjing & Su, Duan & Zhou, Huiyu, 2023. "Spatial-temporal heterogeneity and built environment nonlinearity in inconsiderate parking of dockless bike-sharing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    9. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    10. Wang, Kailai & Akar, Gulsah & Chen, Yu-Jen, 2018. "Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 1-14.
    11. Wang, Kailai & Chen, Yu-Jen, 2020. "Joint analysis of the impacts of built environment on bikeshare station capacity and trip attractions," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    13. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    14. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    15. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    16. Wang, Jueyu & Lindsey, Greg, 2019. "Do new bike share stations increase member use: A quasi-experimental study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 1-11.
    17. Xiaofeng Li & Yao-Jan Wu & Alireza Khani, 2022. "Investigating a small-sized bike-sharing system’s impact on transit usage: a synthetic control analysis in Tucson, Arizona," Public Transport, Springer, vol. 14(2), pages 441-458, June.
    18. Bakó, Barna & Isztin, Péter & Berezvai, Zombor & Cseke, Petra Zsuzsanna, 2019. "Infrastruktúra-bővítés világversenyek idején. A Mol Bubi esete a FINA világbajnoksággal [Infrastructural investments for international sports events. Network expansion of the MOL Bubi bicycle-shari," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 4-21.
    19. Li, Haojie & Ding, Hongliang & Ren, Gang & Xu, Chengcheng, 2018. "Effects of the London Cycle Superhighways on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 304-315.
    20. Wang, Xudong & Cheng, Zhanhong & Trépanier, Martin & Sun, Lijun, 2021. "Modeling bike-sharing demand using a regression model with spatially varying coefficients," Journal of Transport Geography, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:500-:d:476104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.