IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1655-d112346.html
   My bibliography  Save this article

Operating Strategy for Local-Area Energy Systems Integration Considering Uncertainty of Supply-Side and Demand-Side under Conditional Value-At-Risk Assessment

Author

Listed:
  • Jiaqi Shi

    (State Key Laboratory of Alternative Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Yingrui Wang

    (China Energy Engineering Group Tianjin Electric Power Design Institute Co., Ltd., Tianjin 300400, China)

  • Ruibin Fu

    (Inner Mongolia Power (Group) Co., Ltd., Huhehaote 010020, China)

  • Jianhua Zhang

    (State Key Laboratory of Alternative Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

To alleviate environmental pollution and improve the energy usage efficiency of terminals, energy systems integration (ESI) has become an important paradigm in the energy structure evolution. Power, gas and heat systems are becoming tightly interlinked with each other in ESI. The dispatching strategy of local-area ESI has significant impact on its operation. In this paper, a local-area ESI operational scheduling model based on conditional value-at-risk (CVaR) is proposed to minimize expected operational cost, which considers the uncertainty of energy supply-side and demand-side as well as multi-energy network constraints, including electrical network, thermal network and gas network. The risk cost is analyzed comprehensively under the condition of under- or overestimated cost. On this basis, a hybrid method combining particle swarm optimization with interior point algorithm is executed to compute the optimal solutions of two-stage multi-period mixed-integer convex model. Finally, a case study is performed on ESI to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Jiaqi Shi & Yingrui Wang & Ruibin Fu & Jianhua Zhang, 2017. "Operating Strategy for Local-Area Energy Systems Integration Considering Uncertainty of Supply-Side and Demand-Side under Conditional Value-At-Risk Assessment," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1655-:d:112346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiaqi Shi & Ling Wang & Yingrui Wang & Jianhua Zhang, 2017. "Generalized Energy Flow Analysis Considering Electricity Gas and Heat Subsystems in Local-Area Energy Systems Integration," Energies, MDPI, vol. 10(4), pages 1-17, April.
    2. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    3. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    4. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    2. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    3. Yonggu Kim & Eul-Bum Lee, 2018. "A Probabilistic Alternative Approach to Optimal Project Profitability Based on the Value-at-Risk," Sustainability, MDPI, vol. 10(3), pages 1-24, March.
    4. Liang Tian & Yunlei Xie & Bo Hu & Xinping Liu & Tuoyu Deng & Huanhuan Luo & Fengqiang Li, 2019. "A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage," Energies, MDPI, vol. 12(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongjie Zhong & Dongliang Xie & Suwei Zhai & Yonghui Sun, 2018. "Day-Ahead Hierarchical Steady State Optimal Operation for Integrated Energy System Based on Energy Hub," Energies, MDPI, vol. 11(10), pages 1-18, October.
    2. Chen, Yuxin & Jiang, Yuewen, 2023. "Interval energy flow calculation method for electricity-heat-hydrogen integrated energy system considering the correlation between variables," Energy, Elsevier, vol. 263(PB).
    3. Li, Zhenkun & Yao, Yicong & Zhao, Nan & Shan, Jie & Fu, Yang, 2024. "Study on integrated energy microgrid energy purchase strategy with demand-side response in market environment," Energy, Elsevier, vol. 302(C).
    4. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    5. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    6. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    7. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    8. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    9. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    10. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    11. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    12. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    13. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    14. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    15. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    16. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    17. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    18. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    19. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    20. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1655-:d:112346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.