IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2016i1p32-d86221.html
   My bibliography  Save this article

An RVM-Based Model for Assessing the Failure Probability of Slopes along the Jinsha River, Close to the Wudongde Dam Site, China

Author

Listed:
  • Yanyan Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

  • Jianping Chen

    (College of Construction Engineering, Jilin University, Changchun 130026, China)

  • Yanjun Shang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

Assessing the failure potential of slopes is of great significance for land use and management. The objective of this paper is to develop a novel model for evaluating the failure probability of slopes based on a relevance vector machine (RVM), with a special attention to the characteristics of failed slopes along the lower reaches of the Jinsha River, close to the Wudongde dam site. Seven parameters that influence the occurrence of landslides were selected as environmental factors; namely lithology, slope angle, slope height, slope aspect, slope structure, distance from faults, and land use. A total of 55 landslides mapped in the study area were used to train and test the RVM model. The results suggest that the accuracy of the model in predicting the failure probability of slopes, using both training and testing data sets, is very high and deemed satisfactory. To validate the model performance, it was applied to 28 landslide cases identified in the upper reaches of the Jinsha River, where environmental and geological conditions are similar to those of the study area. An accuracy of approximately 92.9% was obtained, which demonstrates that the RVM model has a good generalization performance.

Suggested Citation

  • Yanyan Li & Jianping Chen & Yanjun Shang, 2016. "An RVM-Based Model for Assessing the Failure Probability of Slopes along the Jinsha River, Close to the Wudongde Dam Site, China," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:32-:d:86221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    2. Weihua Zhao & Runqiu Huang & Nengpan Ju & Jianjun Zhao, 2014. "Assessment model for earthquake-triggered landslides based on quantification theory I: case study of Jushui River basin in Sichuan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 821-838, January.
    3. Wen Zhang & Hui-Zhong Li & Jian-ping Chen & Chen Zhang & Li-ming Xu & Wei-feng Sang, 2011. "Comprehensive hazard assessment and protection of debris flows along Jinsha River close to the Wudongde dam site in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 459-477, July.
    4. Suhua Zhou & Guangqi Chen & Ligang Fang & Yunwen Nie, 2016. "GIS-Based Integration of Subjective and Objective Weighting Methods for Regional Landslides Susceptibility Mapping," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Jiao & Yu Yang, 2019. "A product configuration approach based on online data," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2473-2487, August.
    2. Xiaojia Ji & Xuanyi Lu & Chunhong Guo & Weiwei Pei & Hui Xu, 2022. "Predictions of Geological Interface Using Relevant Vector Machine with Borehole Data," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Cao & Peihua Xu & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China," IJERPH, MDPI, vol. 14(1), pages 1-19, December.
    2. Wen Zhang & Qing Wang & Jianping Chen & Huizhong Li & Jinsheng Que & Yuanyuan Kong, 2015. "Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    3. Cencen Niu & Qing Wang & Jianping Chen & Wen Zhang & Liming Xu & Ke Wang, 2015. "Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China," Sustainability, MDPI, vol. 7(11), pages 1-20, November.
    4. Jay Simon, 2020. "Weight Approximation for Spatial Outcomes," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    5. Zhengyin Zhou & Xiaoling Wang & Ruirui Sun & Xuefei Ao & Xiaopei Sun & Mingrui Song, 2014. "Study of the comprehensive risk analysis of dam-break flooding based on the numerical simulation of flood routing. Part II: Model application and results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 675-700, June.
    6. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    7. Paul Sestraș & Ștefan Bilașco & Sanda Roșca & Sanda Naș & Mircea V. Bondrea & Raluca Gâlgău & Ioel Vereș & Tudor Sălăgean & Velibor Spalević & Sorin M. Cîmpeanu, 2019. "Landslides Susceptibility Assessment Based on GIS Statistical Bivariate Analysis in the Hills Surrounding a Metropolitan Area," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    8. Sangseom Jeong & Azman Kassim & Moonhyun Hong & Nader Saadatkhah, 2018. "Susceptibility Assessments of Landslides in Hulu Kelang Area Using a Geographic Information System-Based Prediction Model," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    9. Yongchao Li & Jianping Chen & Chun Tan & Yang Li & Feifan Gu & Yiwei Zhang & Qaiser Mehmood, 2021. "Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2499-2522, February.
    10. Laddyla Bezerra & Osvaldo de Freitas Neto & Olavo Santos & Slobodan Mickovski, 2020. "Landslide Risk Mapping in an Urban Area of the City of Natal, Brazil," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    11. Deqiang Cheng & Javed Iqbal & Chunliu Gao, 2023. "Debris Flow Gully Classification and Susceptibility Assessment Model Construction," Land, MDPI, vol. 12(3), pages 1-20, February.
    12. Guangming Cui & Xuliang Zhang & Zhaohui Zhang & Yinghui Cao & Xiujun Liu, 2019. "Comprehensive Land Carrying Capacities of the Cities in the Shandong Peninsula Blue Economic Zone and their Spatio-Temporal Variations," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    13. Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
    14. Kang-Wook Lee & Wooyong Jung & Seung Heon Han, 2017. "Country Selection Model for Sustainable Construction Businesses Using Hybrid of Objective and Subjective Information," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    15. Chang Liu & Zhanyu Zhang & Shuya Liu & Qiaoyuan Liu & Baoping Feng & Julia Tanzer, 2019. "Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    16. Shanjun Liu & Shiyao Liu & Donglin Lv & Lianhuan Wei & Meng Ao & Xingyu Pan & Bing Li & Yuan Cui & Lun Wang & Xin He, 2024. "Debris flow susceptibility and hazard assessment in Fushun based on hydrological response units," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8667-8693, July.
    17. Iris Bostjančić & Marina Filipović & Vlatko Gulam & Davor Pollak, 2021. "Regional-Scale Landslide Susceptibility Mapping Using Limited LiDAR-Based Landslide Inventories for Sisak-Moslavina County, Croatia," Sustainability, MDPI, vol. 13(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2016:i:1:p:32-:d:86221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.