IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2016i1p30-d86488.html
   My bibliography  Save this article

Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China

Author

Listed:
  • Chen Cao

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Chen Cao and Peihua Xu are co-first authors. They contributed equally to this work.)

  • Peihua Xu

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Chen Cao and Peihua Xu are co-first authors. They contributed equally to this work.)

  • Jianping Chen

    (College of Construction Engineering, Jilin University, Changchun 130026, China)

  • Lianjing Zheng

    (Construction Engineering College, Changchun Sci-Tech University, Changchun 130600, China)

  • Cencen Niu

    (College of Construction Engineering, Jilin University, Changchun 130026, China)

Abstract

This study focused on a cloud model approach for considering debris-flow hazard assessment, in which the cloud model provided a model for transforming the qualitative and quantitative expressions. Additionally, the entropy method and analytical hierarchy process were united for calculating the parameters weights. The weighting method avoids the disadvantages inherent in using subjective or objective methods alone. Based on the cloud model and component weighting method, a model was established for the analysis of debris-flow hazard assessment. There are 29 debris-flow catchments around the pumped storage power station in the study area located near Zhirui (Inner Mongolia, China). Field survey data and 3S technologies were used for data collection. The results of the cloud model calculation process showed that of the 29 catchments, 25 had low debris-flow hazard assessment, three had moderate hazard assessment, and one had high hazard assessment. The widely used extenics method and field geological surveys were used to validate the proposed approach. This approach shows high potential as a useful tool for debris-flow hazard assessment analysis. Compared with other prediction methods, it avoids the randomness and fuzziness in uncertainty problems, and its prediction results are considered reasonable.

Suggested Citation

  • Chen Cao & Peihua Xu & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China," IJERPH, MDPI, vol. 14(1), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:14:y:2016:i:1:p:30-:d:86488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/1/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/1/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    2. Gwo-Fong Lin & Lu-Hsien Chen & Jun-Nan Lai, 2006. "Assessment of Risk due to Debris Flow Events: A Case Study in Central Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 39(1), pages 1-14, September.
    3. Cencen Niu & Qing Wang & Jianping Chen & Wen Zhang & Liming Xu & Ke Wang, 2015. "Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China," Sustainability, MDPI, vol. 7(11), pages 1-20, November.
    4. Wen Zhang & Hui-Zhong Li & Jian-ping Chen & Chen Zhang & Li-ming Xu & Wei-feng Sang, 2011. "Comprehensive hazard assessment and protection of debris flows along Jinsha River close to the Wudongde dam site in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 459-477, July.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Huayong Ni & Wanmo Zheng & Zongliang Li & Renji Ba, 2010. "Recent catastrophic debris flows in Luding county, SW China: geological hazards, rainfall analysis and dynamic characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 523-542, November.
    7. Bin Yu & Yuan Zhu & Tao Wang & Yuanjing Chen & Yunbo Zhu & Yongbo Tie & Ke Lu, 2014. "A prediction model for debris flows triggered by a runoff-induced mechanism," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1141-1161, November.
    8. Adnan Özdemir & Mehmet Delikanli, 2009. "A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 113-136, April.
    9. Tung-Chiung Chang, 2007. "Risk degree of debris flow applying neural networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 209-224, July.
    10. Xixia Sun & Chao Cai & Jie Yang & Xubang Shen, 2014. "Route Assessment for Unmanned Aerial Vehicle Based on Cloud Model," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, December.
    11. George Lu & Long Chiu & David Wong, 2007. "Vulnerability assessment of rainfall-induced debris flows in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 223-244, November.
    12. Zheng, Guozhong & Jing, Youyin & Huang, Hongxia & Zhang, Xutao & Gao, Yuefen, 2009. "Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment," Energy, Elsevier, vol. 34(11), pages 1870-1879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deqiang Cheng & Javed Iqbal & Chunliu Gao, 2023. "Debris Flow Gully Classification and Susceptibility Assessment Model Construction," Land, MDPI, vol. 12(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    2. Cencen Niu & Qing Wang & Jianping Chen & Wen Zhang & Liming Xu & Ke Wang, 2015. "Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China," Sustainability, MDPI, vol. 7(11), pages 1-20, November.
    3. Wen Zhang & Qing Wang & Jianping Chen & Huizhong Li & Jinsheng Que & Yuanyuan Kong, 2015. "Grain-Size Analysis of Debris Flow Alluvial Fans in Panxi Area along Jinsha River, China," Sustainability, MDPI, vol. 7(11), pages 1-24, November.
    4. Bin Yu & Li Li & Yufu Wu & Shengming Chu, 2013. "A formation model for debris flows in the Chenyulan River Watershed, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 745-762, September.
    5. Yanyan Li & Jianping Chen & Yanjun Shang, 2016. "An RVM-Based Model for Assessing the Failure Probability of Slopes along the Jinsha River, Close to the Wudongde Dam Site, China," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    6. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    7. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    8. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    9. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    10. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Pathiraja, Erandathie & Griffith, Garry & Farquharson, Robert & Faggia, Rob, 2019. "The Cost of Climate Change to Agricultural Industries: Coconuts in Sri Lanka," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 10(05), December.
    12. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    13. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    14. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    15. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    16. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    17. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    18. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    19. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    20. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2016:i:1:p:30-:d:86488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.