IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5350-d271475.html
   My bibliography  Save this article

Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China

Author

Listed:
  • Chang Liu

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Zhanyu Zhang

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Shuya Liu

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Qiaoyuan Liu

    (Shandong Hydrology and Water Resource Bureau of Yellow River Conservancy, Jinan 250000, China)

  • Baoping Feng

    (College of Agricultural Engineering, Hohai University, Nanjing 210098, China)

  • Julia Tanzer

    (Institute for Water Quality and Resource Management, TU Wien, Vienna 1040, Austria)

Abstract

Agriculture is one of the largest consumers of water and energy. This paper evaluated the agricultural sustainability of the Chenmengquan irrigation district of China based on the water–energy–food nexus. One objective weighting method and one subjective weighting method were integrated, based on game theory, and a matter–element model was constructed to evaluate agricultural sustainability for the research region. The sensitivity of each index to the evaluation class was also analyzed. The results showed that agricultural sustainability was moderate in 2006–2012 and high in 2012–2015. The indexes, which represent water-use efficiency and yield per unit area of crops, had higher sensitivities in the context of the present case study. The results also indicated that agricultural sustainability had a comparatively positive trend between 2012 and 2015, and that pesticide utilization was the most important issue for agricultural sustainability. The approach of using the combination of a weighting method, based upon game theory, and the use of the matter–element model provides a guide for the evaluation of agricultural sustainability.

Suggested Citation

  • Chang Liu & Zhanyu Zhang & Shuya Liu & Qiaoyuan Liu & Baoping Feng & Julia Tanzer, 2019. "Evaluating Agricultural Sustainability Based on the Water–Energy–Food Nexus in the Chenmengquan Irrigation District of China," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5350-:d:271475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5350/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5350/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    2. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    3. Deliang Sun & Jianping Wu & Fengtai Zhang & Weici Su & Hong Hui, 2018. "Evaluating Water Resource Security in Karst Areas Using DPSIRM Modeling, Gray Correlation, and Matter–Element Analysis," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    4. Byomkesh Talukder & Alison Blay-Palmer & Keith W. Hipel & Gary W. VanLoon, 2017. "Elimination Method of Multi-Criteria Decision Analysis (MCDA): A Simple Methodological Approach for Assessing Agricultural Sustainability," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    5. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    6. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    7. Gómez-Limón, José A. & Sanchez-Fernandez, Gabriela, 2010. "Empirical evaluation of agricultural sustainability using composite indicators," Ecological Economics, Elsevier, vol. 69(5), pages 1062-1075, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Yu & Yongtong Mu, 2022. "Sustainable Agricultural Development Assessment: A Comprehensive Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    2. Yuan-Wei Du & Yi-Pin Fan, 2023. "Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces," Sustainability, MDPI, vol. 15(11), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fumin Deng & Canmian Liu & Xuedong Liang, 2017. "Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    2. Andreas Stylianou & Despina Sdrali & Constantinos D. Apostolopoulos, 2020. "Integrated Sustainability Assessment of Divergent Mediterranean Farming Systems: Cyprus as a Case Study," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    3. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    4. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    5. Zhang, Yan & Zheng, Hongmei & Yang, Zhifeng & Su, Meirong & Liu, Gengyuan & Li, Yanxian, 2015. "Multi-regional input–output model and ecological network analysis for regional embodied energy accounting in China," Energy Policy, Elsevier, vol. 86(C), pages 651-663.
    6. Jindřich Špička & Tomáš Vintr & Renata Aulová & Jana Macháčková, 2020. "Trade-off between the economic and environmental sustainability in Czech dual farm structure," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(6), pages 243-250.
    7. Anna Gaviglio & Mattia Bertocchi & Maria Elena Marescotti & Eugenio Demartini & Alberto Pirani, 2016. "The social pillar of sustainability: a quantitative approach at the farm level," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 4(1), pages 1-19, December.
    8. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    9. Li, Xiangping & Li, Xiang (Robert) & Hudson, Simon, 2013. "The application of generational theory to tourism consumer behavior: An American perspective," Tourism Management, Elsevier, vol. 37(C), pages 147-164.
    10. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    11. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    12. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    13. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    14. Shamsheer Haq & Ismet Boz, 2020. "Measuring environmental, economic, and social sustainability index of tea farms in Rize Province, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2545-2567, March.
    15. Xiaolei Geng & Dou Zhang & Chengwei Li & Yanyao Li & Jingling Huang & Xiangrong Wang, 2020. "Application and Comparison of Multiple Models on Agricultural Sustainability Assessments: A Case Study of the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    16. Gerrard, Catherine L. & Padel, Susanne & Simon, Moakes, 2012. "The use of Farm Business Survey data to compare the environmental performance of organic and conventional farms," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 2(1), pages 1-12, October.
    17. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    18. Ernest Reig‐Martínez & José A. Gómez‐Limón & Andrés J. Picazo‐Tadeo, 2011. "Ranking farms with a composite indicator of sustainability," Agricultural Economics, International Association of Agricultural Economists, vol. 42(5), pages 561-575, September.
    19. Susana G. Azevedo & Minelle E. Silva & João C. O. Matias & Gustavo P. Dias, 2018. "The Influence of Collaboration Initiatives on the Sustainability of the Cashew Supply Chain," Sustainability, MDPI, vol. 10(6), pages 1-29, June.
    20. Ranjan Roy & Ngai Weng Chan, 2012. "An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis," Environment Systems and Decisions, Springer, vol. 32(1), pages 99-110, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5350-:d:271475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.