IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i4p625-d1377372.html
   My bibliography  Save this article

The Effect of Crop Production Systems and Cultivars on Spring Wheat ( Triticum aestivum L.) Yield in a Long-Term Experiment

Author

Listed:
  • Beata Feledyn-Szewczyk

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Pulawy, Poland)

  • Krzysztof Jończyk

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Pulawy, Poland)

  • Jarosław Stalenga

    (Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Pulawy, Poland)

Abstract

The aim of this study was to determine the impact of different crop production systems (organic, integrated, and conventional) on the yields of several spring wheat ( Triticum aestivum L.) cultivars. A field experiment was carried out at the Agricultural Experimental Station of the Institute of Soil Science and Plant Cultivation in Osiny (Poland) in three consecutive growing seasons (2014, 2015, and 2016). Two factors were included in the experiment: the crop production system (organic, integrated, and conventional) and spring wheat cultivars (Kandela, Izera, Ostka Smolicka, and Waluta). The crop production system significantly differentiated the yield, health, and weed infestation of the spring wheat. Wheat yield in the conventional system (6.12 t·ha −1 ) was higher than in the organic system (3.68 t·ha −1 ) by 67%, whereas, in the integrated system (7.61 t·ha −1 ), it was greater than in the organic system by 109%. The lower yields in the organic system were mainly due to fewer ears per m 2 and a smaller 1000-grain weight. In the organic system, we also observed a higher infestation of wheat by foliar fungal pathogens and weeds compared with the conventional and integrated systems. The spring wheat cultivars differed in yield structure and resistance to infestation by fungal pathogens. The Waluta and Izera cultivars performed well in all systems but yielded the best in the integrated and conventional ones. The Kandela cultivar was the most suitable for the organic system, as it achieved the highest yield (4.16 t·ha −1 ). This was mainly due to its ability to form a compact canopy with relatively high ear density, a large 1000-grain weight, and the highest resistance to fungal pathogens. The results for cultivars’ performance in the organic system may be useful for farmers in decreasing yield gaps in relation to integrated and conventional systems.

Suggested Citation

  • Beata Feledyn-Szewczyk & Krzysztof Jończyk & Jarosław Stalenga, 2024. "The Effect of Crop Production Systems and Cultivars on Spring Wheat ( Triticum aestivum L.) Yield in a Long-Term Experiment," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:625-:d:1377372
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/4/625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/4/625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Konrad Prandecki & Wioletta Wrzaszcz & Marek Zieliński, 2021. "Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    2. Anthony Trewavas, 2001. "Urban myths of organic farming," Nature, Nature, vol. 410(6827), pages 409-410, March.
    3. Paweł Radzikowski & Krzysztof Jończyk & Beata Feledyn-Szewczyk & Tomasz Jóźwicki, 2023. "Assessment of Resistance of Different Varieties of Winter Wheat to Leaf Fungal Diseases in Organic Farming," Agriculture, MDPI, vol. 13(4), pages 1-21, April.
    4. Silvia-Elena Cristache & Mariana Vuță & Erika Marin & Sorin-Iulian Cioacă & Mihai Vuţă, 2018. "Organic versus Conventional Farming—A Paradigm for the Sustainable Development of the European Countries," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    5. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    2. Felizitas Winkhart & Thomas Mösl & Harald Schmid & Kurt-Jürgen Hülsbergen, 2022. "Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions," Agriculture, MDPI, vol. 12(7), pages 1-30, June.
    3. de la Cruz, Vera Ysabel V. & Tantriani, & Cheng, Weiguo & Tawaraya, Keitaro, 2023. "Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis," Agricultural Systems, Elsevier, vol. 211(C).
    4. Patrick M. Carr & Greta G. Gramig & Mark A. Liebig, 2013. "Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality," Sustainability, MDPI, vol. 5(7), pages 1-30, July.
    5. Marek Zieliński & Wioletta Wrzaszcz & Jolanta Sobierajewska & Marcin Adamski, 2024. "Development and Effects of Organic Farms in Poland, Taking into Account Their Location in Areas Facing Natural or Other Specific Constraints," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    6. José Luis Aleixandre & José Luis Aleixandre-Tudó & Máxima Bolaños-Pizarro & Rafael Aleixandre-Benavent, 2015. "Mapping the scientific research in organic farming: a bibliometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 295-309, October.
    7. Zagata, Lukas & Uhnak, Tomas & Hrabák, Jiří, 2021. "Moderately radical? Stakeholders' perspectives on societal roles and transformative potential of organic agriculture," Ecological Economics, Elsevier, vol. 190(C).
    8. Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    9. Radka Redlichová & Gabriela Chmelíková & Ivana Blažková & Eliška Svobodová & Inez Naaki Vanderpuje, 2021. "Organic Food Needs More Land and Direct Energy to Be Produced Compared to Food from Conventional Farming: Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    10. Natalia Brzezina & Katharina Biely & Ariella Helfgott & Birgit Kopainsky & Joost Vervoort & Erik Mathijs, 2017. "Development of Organic Farming in Europe at the Crossroads: Looking for the Way Forward through System Archetypes Lenses," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    11. Jouzi, Zeynab & Azadi, Hossein & Taheri, Fatemeh & Zarafshani, Kiumars & Gebrehiwot, Kindeya & Van Passel, Steven & Lebailly, Philippe, 2017. "Organic Farming and Small-Scale Farmers: Main Opportunities and Challenges," Ecological Economics, Elsevier, vol. 132(C), pages 144-154.
    12. Ursu, Ana, 2020. "Retrospective analysis of statistical indicators for vegetable and animal agricultural products obtained in the conventional system and in ecological agriculture," MPRA Paper 106300, University Library of Munich, Germany.
    13. Fatemeh Taheri & Hossein Azadi & Marijke D’Haese, 2017. "A World without Hunger: Organic or GM Crops?," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    14. Lucas David & Michel Streith & Audrey Michaud & Michaël Dambrun, 2024. "Organic and Conventional Farmers’ Mental Health: A Preliminary Study on the Role of Social Psychological Mediators," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    15. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Tomasz Lenartowicz & Henryk Bujak & Marcin Przystalski & Inna Mashevska & Kamila Nowosad & Krzysztof Jończyk & Beata Feledyn-Szewczyk, 2024. "Assessment of Resistance of Barley Varieties to Diseases in Polish Organic Field Trials," Agriculture, MDPI, vol. 14(5), pages 1-11, May.
    17. Movedi, Ermes & Valiante, Daniele & Colosio, Alessandro & Corengia, Luca & Cossa, Stefano & Confalonieri, Roberto, 2022. "A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice," Ecological Modelling, Elsevier, vol. 463(C).
    18. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    19. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    20. Daniel P. Roberts & Autar K. Mattoo, 2018. "Sustainable Agriculture—Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses," Agriculture, MDPI, vol. 8(1), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:625-:d:1377372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.