IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i11p4523-4545d29886.html
   My bibliography  Save this article

The Modern Phosphorus Sustainability Movement: A Profiling Experiment

Author

Listed:
  • Andrea E. Ulrich

    (Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich, Universitätsstrasse 22, 8092 Zurich, Switzerland
    Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau, Switzerland)

  • Ewald Schnug

    (Institute of Crop and Soil Science, Federal Research Center for Cultivated Plants, Julius Kühn-Insitute, Bundesallee 50, 38116 Braunschweig, Germany)

Abstract

Since the “peak phosphorus” concept emerged in 2007, concerns about the future availability of phosphate rock have funneled into a growing number of actions, often in the form of new and innovative platforms focusing on phosphorus sustainability. This trend seems to continue on different levels and in different formats, which makes the landscape of activities increasingly blurred and complex. This article considers the emerging phase of the modern phosphorus sustainability movement. It provides a first profiling overview of platforms working towards more sustainable production, consumption, and reuse of phosphorus (P) within the frame of securing global food production and environmental quality. The aim is to gain a better understanding of the movement, pertinent literature, the problem sphere itself, and of forms of possible engagement. Major barriers and opportunities inherent in the various approaches are discussed. It is concluded that overarching coordination will be necessary to improve future planning and priority setting for sustainability strategies.

Suggested Citation

  • Andrea E. Ulrich & Ewald Schnug, 2013. "The Modern Phosphorus Sustainability Movement: A Profiling Experiment," Sustainability, MDPI, vol. 5(11), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:11:p:4523-4545:d:29886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/11/4523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/11/4523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dana Cordell & Stuart White, 2011. "Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    2. Subra Suresh, 2012. "Global challenges need global solutions," Nature, Nature, vol. 490(7420), pages 337-338, October.
    3. Kazuyo Matsubae‐Yokoyama & Hironari Kubo & Kenichi Nakajima & Tetsuya Nagasaka, 2009. "A Material Flow Analysis of Phosphorus in Japan," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 687-705, October.
    4. James Elser & Elena Bennett, 2011. "A broken biogeochemical cycle," Nature, Nature, vol. 478(7367), pages 29-31, October.
    5. Jonathan Adams, 2012. "The rise of research networks," Nature, Nature, vol. 490(7420), pages 335-336, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J., 2018. "A multi-year phosphorus flow analysis of a key agricultural region in Australia to identify options for sustainable management," Agricultural Systems, Elsevier, vol. 161(C), pages 42-60.
    2. Alison Deviney & Khara Grieger & Ashton Merck & John Classen & Anna-Maria Marshall, 2023. "Phosphorus sustainability through coordinated stakeholder engagement: a perspective," Environment Systems and Decisions, Springer, vol. 43(3), pages 371-378, September.
    3. Matsubae, Kazuyo & Webeck, Elizabeth & Nansai, Keisuke & Nakajima, Kenichi & Tanaka, Mikiya & Nagasaka, Tetsuya, 2015. "Hidden phosphorus flows related with non-agriculture industrial activities: A focus on steelmaking and metal surface treatment," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 360-367.
    4. Jedelhauser, Michael & Binder, Claudia R., 2015. "Losses and efficiencies of phosphorus on a national level – A comparison of European substance flow analyses," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 294-310.
    5. Ashton W. Merck & Khara D. Grieger & Alison Deviney & Anna-Maria Marshall, 2023. "Using a Phosphorus Flow Diagram as a Boundary Object to Inform Stakeholder Engagement," Sustainability, MDPI, vol. 15(15), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    2. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    3. Elizabeth Webeck & Kazuyo Matsubae & Tetsuya Nagasaka, 2015. "Phosphorus requirements for the changing diets of China, India and Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(3), pages 455-469, July.
    4. Heng Yi Teah & Motoharu Onuki, 2017. "Support Phosphorus Recycling Policy with Social Life Cycle Assessment: A Case of Japan," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    5. Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    6. Stanley Udochukwu Ofoegbu, 2019. "Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing," Sustainability, MDPI, vol. 11(23), pages 1-38, November.
    7. Zaida Chinchilla-Rodríguez & Cassidy R Sugimoto & Vincent Larivière, 2019. "Follow the leader: On the relationship between leadership and scholarly impact in international collaborations," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.
    8. Matsubae, Kazuyo & Webeck, Elizabeth & Nansai, Keisuke & Nakajima, Kenichi & Tanaka, Mikiya & Nagasaka, Tetsuya, 2015. "Hidden phosphorus flows related with non-agriculture industrial activities: A focus on steelmaking and metal surface treatment," Resources, Conservation & Recycling, Elsevier, vol. 105(PB), pages 360-367.
    9. Walan, Petter & Davidsson, Simon & Johansson, Sheshti & Höök, Mikael, 2014. "Phosphate rock production and depletion: Regional disaggregated modeling and global implications," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 178-187.
    10. Uwe Cantner & Martin Kalthaus & Matthias Menter & Pierre Mohnen, 2023. "Global knowledge flows: characteristics, determinants, and impacts," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(5), pages 1063-1076.
    11. Qiming Wang & Tao Zhang & Xinyue He & Rongfeng Jiang, 2017. "Assessment of Phosphorus Recovery from Swine Wastewater in Beijing, China," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    12. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    13. Zuo, Zhiya & Zhao, Kang, 2018. "The more multidisciplinary the better? – The prevalence and interdisciplinarity of research collaborations in multidisciplinary institutions," Journal of Informetrics, Elsevier, vol. 12(3), pages 736-756.
    14. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    15. Svein Kyvik & Ingvild Reymert, 2017. "Research collaboration in groups and networks: differences across academic fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 951-967, November.
    16. Jeffrey Demaine, 2022. "Fractionalization of research impact reveals global trends in university collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2235-2247, May.
    17. Marek Kopecký & Ladislav Kolář & Petr Konvalina & Otakar Strunecký & Florina Teodorescu & Petr Mráz & Jiří Peterka & Radka Váchalová & Jaroslav Bernas & Petr Bartoš & Feodor Filipov & Daniel Bucur, 2020. "Modified Biochar—A Tool for Wastewater Treatment," Energies, MDPI, vol. 13(20), pages 1-13, October.
    18. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    19. Ashton W. Merck & Khara D. Grieger & Alison Deviney & Anna-Maria Marshall, 2023. "Using a Phosphorus Flow Diagram as a Boundary Object to Inform Stakeholder Engagement," Sustainability, MDPI, vol. 15(15), pages 1-10, July.
    20. Flora M A Colledge & Bernice S Elger & David M Shaw, 2013. "“Conferring Authorship”: Biobank Stakeholders’ Experiences with Publication Credit in Collaborative Research," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:11:p:4523-4545:d:29886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.