IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12346-12974d58937.html
   My bibliography  Save this article

Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective

Author

Listed:
  • Carey W. King

    (Energy Institute, the University of Texas at Austin, 2304 Whitis Ave., C2400, Austin, TX 78712, USA
    Jackson School of Geosciences, the University of Texas at Austin, 2275 Speedway, C9000, Austin, TX 78712, USA)

  • John P. Maxwell

    (Senate Fiscal Agency, P.O. Box 30036 Lansing, MI 48909-7536, USA)

  • Alyssa Donovan

    (Jackson School of Geosciences, the University of Texas at Austin, 2275 Speedway, C9000, Austin, TX 78712, USA)

Abstract

We translate between biophysical and economic metrics that characterize the role of energy in the economy. Specifically, using data from the International Energy Agency, we estimate the energy intensity ratio (EIR), a price-based proxy for a power return ratio (PRR ∼ P out / P invested ). The EIR is a useful metric, because for most countries and energy commodities, it can indicate the biophysical trends of net energy when data are too scarce to perform an original net energy analysis. We calculate EIR for natural gas, coal, petroleum and electricity for forty-four countries from 1978 to 2010. Global EIR values generally rise from 1978 to 1998, decline from 1998 to 2008 and then slightly rebound. These trends indicate one interpretation of the net energy of the world economy. To add perspective to our recent, but short, time series, we perform the same calculations for historical England and United Kingdom energy prices to demonstrate that a given energy price translates to different PRRs (EIR in this case) depending on the structure of the economy and technology. We review the formulation of PRRs and energy return ratios (ERR ∼ E out / E invested ) to indicate why PRRs translate to (the inverse of) energy prices and ERRs translate to (the inverse of) energy costs. We show why for any given value of an ERR or PRR, there is not a single corresponding energy cost or price, and vice versa. These principles in turn provide the basis to perform better modeling of future energy scenarios (e.g., low-carbon transition) by considering the relationship between economic metrics (cost and price) and biophysical metrics (energy and power return ratios) based on energy, material and power flows.

Suggested Citation

  • Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12346-12974:d:58937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    2. Stephen Broadberry & Bruce Campbell & Alexander Klein & Mark Overton & Bas van Leeuwen, 2012. "British Economic Growth, 1270-1870: an output-based approach," Studies in Economics 1203, School of Economics, University of Kent.
    3. Lutz Kilian, 2010. "Oil Price Shocks, Monetary Policy and Stagflation," RBA Annual Conference Volume (Discontinued), in: Renée Fry & Callum Jones & Christopher Kent (ed.),Inflation in an Era of Relative Price Shocks, Reserve Bank of Australia.
    4. Kander, Astrid & Stern, David I., 2014. "Economic growth and the transition from traditional to modern energy in Sweden," Energy Economics, Elsevier, vol. 46(C), pages 56-65.
    5. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    6. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    7. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    8. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    9. Philip F. Henshaw & Carey King & Jay Zarnikau, 2011. "System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems," Sustainability, MDPI, vol. 3(10), pages 1-36, October.
    10. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    11. Nathan Gagnon & Charles A.S. Hall & Lysle Brinker, 2009. "A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production," Energies, MDPI, vol. 2(3), pages 1-14, July.
    12. Brandt, Adam R. & Dale, Michael & Barnhart, Charles J., 2013. "Calculating systems-scale energy efficiency and net energy returns: A bottom-up matrix-based approach," Energy, Elsevier, vol. 62(C), pages 235-247.
    13. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    14. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    15. Modahl, Ingunn Saur & Raadal, Hanne Lerche & Gagnon, Luc & Bakken, Tor Haakon, 2013. "How methodological issues affect the energy indicator results for different electricity generation technologies," Energy Policy, Elsevier, vol. 63(C), pages 283-299.
    16. Carey W. King & Charles A.S. Hall, 2011. "Relating Financial and Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-23, October.
    17. David I. Stern and Astrid Kander, 2012. "The Role of Energy in the Industrial Revolution and Modern Economic Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    18. Gregory Clark, 2001. "The Long March of History: Farm Laborers Wages in England 1208-1850," Levine's Working Paper Archive 625018000000000238, David K. Levine.
    19. Roger Fouquet, 2011. "Divergences in Long-Run Trends in the Prices of Energy and Energy Services," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 196-218, Summer.
    20. Ayres, Robert U., 2008. "Sustainability economics: Where do we stand?," Ecological Economics, Elsevier, vol. 67(2), pages 281-310, September.
    21. Bullard, Clark W. & Penner, Peter S. & Pilati, David A., 1978. "Net energy analysis : Handbook for combining process and input-output analysis," Resources and Energy, Elsevier, vol. 1(3), pages 267-313, November.
    22. Roger Fouquet, 2014. "Editor's Choice Long-Run Demand for Energy Services: Income and Price Elasticities over Two Hundred Years," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 186-207.
    23. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    24. Arvesen, Anders & Hertwich, Edgar G., 2015. "More caution is needed when using life cycle assessment to determine energy return on investment (EROI)," Energy Policy, Elsevier, vol. 76(C), pages 1-6.
    25. Zhang, Yongli & Colosi, Lisa M., 2013. "Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations," Energy Policy, Elsevier, vol. 57(C), pages 630-633.
    26. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    27. Ayres, Robert & Voudouris, Vlasios, 2014. "The economic growth enigma: Capital, labour and useful energy?," Energy Policy, Elsevier, vol. 64(C), pages 16-28.
    28. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    29. Adam R. Brandt & Michael Dale, 2011. "A General Mathematical Framework for Calculating Systems-Scale Efficiency of Energy Extraction and Conversion: Energy Return on Investment (EROI) and Other Energy Return Ratios," Energies, MDPI, vol. 4(8), pages 1-35, August.
    30. Fouquet, Roger, 2014. "Long run demand for energy services: income and price elasticities over two hundred years," LSE Research Online Documents on Economics 59070, London School of Economics and Political Science, LSE Library.
    31. Brandt, Adam R. & Englander, Jacob & Bharadwaj, Sharad, 2013. "The energy efficiency of oil sands extraction: Energy return ratios from 1970 to 2010," Energy, Elsevier, vol. 55(C), pages 693-702.
    32. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    2. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    3. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    4. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    6. David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, vol. 9(11), pages 1-15, November.
    7. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    8. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    9. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    10. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    11. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    12. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    13. Fizaine, Florian & Court, Victor, 2016. "Energy expenditure, economic growth, and the minimum EROI of society," Energy Policy, Elsevier, vol. 95(C), pages 172-186.
    14. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
    15. Florian Fizaine & Victor Court, 2014. "Energy transition toward renewables and metal depletion: an approach through the EROI concept," Working Papers 1407, Chaire Economie du climat.
    16. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    17. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    18. King, Carey W., 2020. "An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model," Ecological Economics, Elsevier, vol. 169(C).
    19. Adam R. Brandt, 2017. "How Does Energy Resource Depletion Affect Prosperity? Mathematics of a Minimum Energy Return on Investment (EROI)," Biophysical Economics and Resource Quality, Springer, vol. 2(1), pages 1-12, March.
    20. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12346-12974:d:58937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.