IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp154-167.html
   My bibliography  Save this article

Environmental impact profile of electricity generation in Chile: A baseline study over two decades

Author

Listed:
  • Vega-Coloma, Mabel
  • Zaror, Claudio A.

Abstract

Chile is one of the world largest copper producing countries, housing significant mineral reserves, and accounting for over 30% of national electricity consumption. Currently, the total installed electricity generation capacity amounts to over 20 GW and is expected to double within the next two decades. Since electricity generation is a well-known source of environmental impacts throughout its lifecycle, there is a permanent need to evaluate potential environmental burdens of alternative courses of action. Unfortunately, systematic information on the environmental performance of current electricity generation in the country is lacking. Therefore, this paper reports the potential environmental burdens of the Chilean electricity generation system over the last two decades, to account for temporal effects and serve as a baseline to which compare different strategies, following a cradle-to-gate approach based on ISO 14.040–44:2006 standards. The system limits included fuels extraction and transportation processes, and construction materials, as well as electricity generation, considering as a functional unit 1 kWh.

Suggested Citation

  • Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:154-167
    DOI: 10.1016/j.rser.2018.05.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zerrin Günkaya & Alp Özdemir & Aysun Özkan & Müfide Banar, 2016. "Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey," Sustainability, MDPI, vol. 8(11), pages 1-14, October.
    2. Siyue Li & X. Lu, 2012. "Uncertainties of carbon emission from hydroelectric reservoirs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1343-1345, July.
    3. Alexander T. Dale & André Frossard Pereira de Lucena & Joe Marriott & Bruno Soares Moreira Cesar Borba & Roberto Schaeffer & Melissa M. Bilec, 2013. "Modeling Future Life-Cycle Greenhouse Gas Emissions and Environmental Impacts of Electricity Supplies in Brazil," Energies, MDPI, vol. 6(7), pages 1-27, July.
    4. Watts, David & Durán, Pablo & Flores, Yarela, 2017. "How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power," Renewable Energy, Elsevier, vol. 103(C), pages 128-142.
    5. Rubio Rodríguez, M.A. & Feitó Cespón, M. & De Ruyck, J. & Ocaña Guevara, V.S. & Verma, V.K., 2013. "Life cycle modeling of energy matrix scenarios, Belgian power and partial heat mixes as case study," Applied Energy, Elsevier, vol. 107(C), pages 329-337.
    6. El-Fadel, R.H. & Hammond, G.P. & Harajli, H.A. & Jones, C.I. & Kabakian, V.K. & Winnett, A.B., 2010. "The Lebanese electricity system in the context of sustainable development," Energy Policy, Elsevier, vol. 38(2), pages 751-761, February.
    7. Lee, Kun-Mo & Lee, Sang-Yong & Hur, Tak, 2004. "Life cycle inventory analysis for electricity in Korea," Energy, Elsevier, vol. 29(1), pages 87-101.
    8. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
    9. Adamczyk, Janusz & Dzikuć, Maciej, 2014. "The analysis of suppositions included in the Polish Energetic Policy using the LCA technique—Poland case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 42-50.
    10. Gibon, Thomas & Arvesen, Anders & Hertwich, Edgar G., 2017. "Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1283-1290.
    11. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    12. Koskela, Sirkka & Seppala, Jyri & Lipp, Ando & Hiltunen, Marja-Riitta & Pold, Evelin & Talve, Siret, 2007. "Estonian electricity supply scenarios for 2020 and their environmental performance," Energy Policy, Elsevier, vol. 35(7), pages 3571-3582, July.
    13. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    14. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    15. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    16. Foidart, F. & Oliver-Solá, J. & Gasol, C.M. & Gabarrell, X. & Rieradevall, J., 2010. "How important are current energy mix choices on future sustainability? Case study: Belgium and Spain--projections towards 2020-2030," Energy Policy, Elsevier, vol. 38(9), pages 5028-5037, September.
    17. Bustos, Cristian & Watts, David & Ayala, Marysol, 2017. "Financial risk reduction in photovoltaic projects through ocean-atmospheric oscillations modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 548-568.
    18. Tan, Reginald B.H. & Wijaya, David & Khoo, Hsien H., 2010. "LCI (Life cycle inventory) analysis of fuels and electricity generation in Singapore," Energy, Elsevier, vol. 35(12), pages 4910-4916.
    19. Fthenakis, Vasilis & Kim, Hyung Chul, 2009. "Land use and electricity generation: A life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1465-1474, August.
    20. Demarty, M. & Bastien, J., 2011. "GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements," Energy Policy, Elsevier, vol. 39(7), pages 4197-4206, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Merino & Israel Herrera & Hugo Valdés, 2019. "Environmental Assessment of Energy Scenarios for a Low-Carbon Electrical Network in Chile," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    2. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Vanesa Rodríguez-Merchan & Claudia Ulloa-Tesser & Yannay Casas-Ledón, 2019. "Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case," Energies, MDPI, vol. 13(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Zerrin Günkaya & Alp Özdemir & Aysun Özkan & Müfide Banar, 2016. "Environmental Performance of Electricity Generation Based on Resources: A Life Cycle Assessment Case Study in Turkey," Sustainability, MDPI, vol. 8(11), pages 1-14, October.
    4. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    5. Ding, Ning & Liu, Jingru & Yang, Jianxin & Yang, Dong, 2017. "Comparative life cycle assessment of regional electricity supplies in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 47-59.
    6. Ramirez, Angel D. & Rivela, Beatriz & Boero, Andrea & Melendres, Ana M., 2019. "Lights and shadows of the environmental impacts of fossil-based electricity generation technologies: A contribution based on the Ecuadorian experience," Energy Policy, Elsevier, vol. 125(C), pages 467-477.
    7. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    8. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.
    9. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    10. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    11. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    13. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    14. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    15. Alizadeh, Sadegh & Avami, Akram, 2021. "Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran," Renewable Energy, Elsevier, vol. 179(C), pages 1548-1564.
    16. Hosseini, Seyed Mohsen & Kanagaraj, N. & Sadeghi, Shahrbanoo & Yousefi, Hossein, 2022. "Midpoint and endpoint impacts of electricity generation by renewable and nonrenewable technologies: A case study of Alberta, Canada," Renewable Energy, Elsevier, vol. 197(C), pages 22-39.
    17. Vázquez-Rowe, Ian & Reyna, Janet L. & García-Torres, Samy & Kahhat, Ramzy, 2015. "Is climate change-centrism an optimal policy making strategy to set national electricity mixes?," Applied Energy, Elsevier, vol. 159(C), pages 108-116.
    18. Besseau, Romain & Sacchi, Romain & Blanc, Isabelle & Pérez-López, Paula, 2019. "Past, present and future environmental footprint of the Danish wind turbine fleet with LCA_WIND_DK, an online interactive platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 274-288.
    19. Mahmud, M.A. Parvez & Farjana, Shahjadi Hisan, 2022. "Comparative life cycle environmental impact assessment of renewable electricity generation systems: A practical approach towards Europe, North America and Oceania," Renewable Energy, Elsevier, vol. 193(C), pages 1106-1120.
    20. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:154-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.