IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.02512.html
   My bibliography  Save this paper

Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle

Author

Listed:
  • Carey W. King

Abstract

All economies require physical resource consumption to grow and maintain their structure. The modern economy is additionally characterized by private debt. The Human and Resources with MONEY (HARMONEY) economic growth model links these features using a stock and flow consistent framework in physical and monetary units. Via an updated version, we explore the interdependence of growth and three major structural metrics of an economy. First, we show that relative decoupling of gross domestic product (GDP) from resource consumption is an expected pattern that occurs because of physical limits to growth, not a response to avoid physical limits. While an increase in resource efficiency of operating capital does increase the level of relative decoupling, so does a change in pricing from one based on full costs to one based only on marginal costs that neglects depreciation and interest payments leading to higher debt ratios. Second, if assuming full labor bargaining power for wages, when a previously-growing economy reaches peak resource extraction and GDP, wages remain high but profits and debt decline to zero. By removing bargaining power, profits can remain positive at the expense of declining wages. Third, the distribution of intermediate transactions within the input-output table of the model follows the same temporal pattern as in the post-World War II U.S. economy. These results indicate that the HARMONEY framework enables realistic investigation of interdependent structural change and trade-offs between economic distribution, size, and resources consumption.

Suggested Citation

  • Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
  • Handle: RePEc:arx:papers:2106.02512
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.02512
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    2. Robert U. Ayres & Benjamin Warr, 2009. "The Economic Growth Engine," Books, Edward Elgar Publishing, number 13324.
    3. King, Carey W., 2020. "An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model," Ecological Economics, Elsevier, vol. 169(C).
    4. Hyman P. Minsky, 1977. "The Financial Instability Hypothesis: An Interpretation of Keynes and an Alternative to“Standard” Theory," Challenge, Taylor & Francis Journals, vol. 20(1), pages 20-27, March.
    5. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    6. Gaël Giraud & Zeynep Kahraman, 2014. "How Dependent is Growth from Primary Energy? The Dependency ratio of Energy in 33 Countries (1970-2011)," Post-Print halshs-01151590, HAL.
    7. Ayres, Robert U., 2008. "Sustainability economics: Where do we stand?," Ecological Economics, Elsevier, vol. 67(2), pages 281-310, September.
    8. Warr, Benjamin & Ayres, Robert & Eisenmenger, Nina & Krausmann, Fridolin & Schandl, Heinz, 2010. "Energy use and economic development: A comparative analysis of useful work supply in Austria, Japan, the United Kingdom and the US during 100Â years of economic growth," Ecological Economics, Elsevier, vol. 69(10), pages 1904-1917, August.
    9. Steve Keen, 2009. "Household Debt: The Final Stage in an Artificially Extended Ponzi Bubble," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 42(3), pages 347-357, September.
    10. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    12. Hagens, N.J., 2020. "Economics for the future – Beyond the superorganism," Ecological Economics, Elsevier, vol. 169(C).
    13. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    14. Keen, Steve, 2013. "A monetary Minsky model of the Great Moderation and the Great Recession," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 221-235.
    15. Jesus Felipe & John McCombie, 2006. "The Tyranny of the Identity: Growth Accounting Revisited," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(3), pages 283-299.
    16. Casler, Stephen & Wilbur, Suzanne, 1984. "Energy input-output analysis : A simple guide," Resources and Energy, Elsevier, vol. 6(2), pages 187-201, June.
    17. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    18. Herendeen, Robert A., 2015. "Connecting net energy with the price of energy and other goods and services," Ecological Economics, Elsevier, vol. 109(C), pages 142-149.
    19. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    20. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    21. Steve Keen, 1995. "Finance and Economic Breakdown: Modeling Minsky’s “Financial Instability Hypothesis”," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 17(4), pages 607-635, July.
    22. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    23. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    24. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    25. Keen, Steve & Ayres, Robert U. & Standish, Russell, 2019. "A Note on the Role of Energy in Production," Ecological Economics, Elsevier, vol. 157(C), pages 40-46.
    26. Jesus Felipe & Franklin M. Fisher, 2003. "Aggregation in Production Functions: What Applied Economists should Know," Metroeconomica, Wiley Blackwell, vol. 54(2‐3), pages 208-262, May.
    27. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    28. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    29. William D. Nordhaus, 1992. "Lethal Model 2: The Limits to Growth Revisited," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 23(2), pages 1-60.
    30. Shaikh, Anwar, 1974. "Laws of Production and Laws of Algebra: The Humbug Production Function," The Review of Economics and Statistics, MIT Press, vol. 56(1), pages 115-120, February.
    31. Megan C. Guilford & Charles A.S. Hall & Peter O’Connor & Cutler J. Cleveland, 2011. "A New Long Term Assessment of Energy Return on Investment (EROI) for U.S. Oil and Gas Discovery and Production," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey W. King, 2022. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Biophysical Economics and Resource Quality, Springer, vol. 7(1), pages 1-30, March.
    2. King, Carey W., 2020. "An integrated biophysical and economic modeling framework for long-term sustainability analysis: the HARMONEY model," Ecological Economics, Elsevier, vol. 169(C).
    3. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    4. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    5. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    6. Carey W. King, 2015. "Comparing World Economic and Net Energy Metrics, Part 3: Macroeconomic Historical and Future Perspectives," Energies, MDPI, vol. 8(11), pages 1-24, November.
    7. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    8. Charles A. S. Hall, 2022. "The 50th Anniversary of The Limits to Growth : Does It Have Relevance for Today’s Energy Issues?," Energies, MDPI, vol. 15(14), pages 1-13, July.
    9. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    10. Jiabin Chen & Shaobo Wen, 2020. "Implications of Energy Intensity Ratio for Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    11. Feng, Jingxuan & Feng, Lianyong & Wang, Jianliang & King, Carey W., 2018. "Modeling the point of use EROI and its implications for economic growth in China," Energy, Elsevier, vol. 144(C), pages 232-242.
    12. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    13. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Kemp-Benedict, Eric, 2018. "Dematerialization, Decoupling, and Productivity Change," Ecological Economics, Elsevier, vol. 150(C), pages 204-216.
    15. Victor Court, 2018. "Energy Capture, Technological Change, and Economic Growth: An Evolutionary Perspective," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-27, September.
    16. Richters, Oliver, 2015. "Integrating Energy Use into Macroeconomic Stock-Flow Consistent Models," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 154764, March.
    17. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    18. King, Carey W., 2014. "Matrix method for comparing system and individual energy return ratios when considering an energy transition," Energy, Elsevier, vol. 72(C), pages 254-265.
    19. Melgar-Melgar, Rigo E. & Hall, Charles A.S., 2020. "Why ecological economics needs to return to its roots: The biophysical foundation of socio-economic systems," Ecological Economics, Elsevier, vol. 169(C).
    20. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.02512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.