IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p999-d79898.html
   My bibliography  Save this article

The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model

Author

Listed:
  • Elena Morini

    (Engineering Department, CIRIAF, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Ali G. Touchaei

    (AMESiS Energy Inc, Montreal, QC H4b 1r8, Canada)

  • Beatrice Castellani

    (Engineering Department, CIRIAF, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Federico Rossi

    (Engineering Department, CIRIAF, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

  • Franco Cotana

    (Engineering Department, CIRIAF, University of Perugia, Via G. Duranti 67, Perugia 06125, Italy)

Abstract

The impacts of the urban heat island (UHI) phenomenon on energy consumption, air quality, and human health have been widely studied and described. Mitigation strategies have been developed to fight the UHI and its detrimental consequences. A potential countermeasure is the increase of urban albedo by using cool materials. Cool materials are highly reflective materials that can maintain lower surface temperatures and thus can present an effective solution to mitigate the UHI. Terni’s proven record of high temperatures along with related environmental and comfort issues in its urban areas have reflected the local consequences of global warming. On the other hand, it promoted integrated actions by the government and research institutes to investigate solutions to mitigate the UHI effects. In this study, the main goal is to investigate the effectiveness of albedo increase as a strategy to tackle the UHI, by using the Weather Research and Forecasting (WRF) mesoscale model to simulate the urban climate of Terni (Italy). Three different scenarios through a summer heat wave in the summer of 2015 are analyzed. The Base Scenario, which simulates the actual conditions of the urban area, is the control case. In the Albedo Scenario (ALB Scenario), the albedo of the roof, walls and road of the whole urban area is increased. In the Albedo-Industrial Scenario (ALB-IND Scenario), the albedo of the roof, walls and road of the area occupied by the main industrial site of Terni, located in close proximity to the city center, is increased. The simulation results show that the UHI is decreased up to 2 °C both at daytime and at nighttime in the ALB and in ALB-IND Scenarios. Peak temperatures in the urban area can be decreased by 1 °C at daytime, and by about 2 °C at nighttime. Albedo increase in the area of interest might thus represent an opportunity to decrease the UHI effect and its consequences.

Suggested Citation

  • Elena Morini & Ali G. Touchaei & Beatrice Castellani & Federico Rossi & Franco Cotana, 2016. "The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:999-:d:79898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rossi, Federico & Pisello, Anna Laura & Nicolini, Andrea & Filipponi, Mirko & Palombo, Massimo, 2014. "Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model," Applied Energy, Elsevier, vol. 114(C), pages 621-631.
    2. Rossi, Federico & Castellani, Beatrice & Presciutti, Andrea & Morini, Elena & Filipponi, Mirko & Nicolini, Andrea & Santamouris, Matheos, 2015. "Retroreflective façades for urban heat island mitigation: Experimental investigation and energy evaluations," Applied Energy, Elsevier, vol. 145(C), pages 8-20.
    3. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds," Sustainability, MDPI, vol. 6(10), pages 1-15, September.
    4. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    2. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    3. Hailu Yang & Kai Yang & Yinghao Miao & Linbing Wang & Chen Ye, 2020. "Comparison of Potential Contribution of Typical Pavement Materials to Heat Island Effect," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    4. Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
    5. Prashant K. Srivastava & Dawei Han & Aradhana Yaduvanshi & George P. Petropoulos & Sudhir Kumar Singh & Rajesh Kumar Mall & Rajendra Prasad, 2017. "Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation," Sustainability, MDPI, vol. 9(11), pages 1-17, October.
    6. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    7. Fabrizio Ascione & Nicola Bianco & Claudio De Stasio & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2017. "Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
    8. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    9. Chaobin Yang & Xingyuan He & Fengqin Yan & Lingxue Yu & Kun Bu & Jiuchun Yang & Liping Chang & Shuwen Zhang, 2017. "Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    10. Masataka Kasai & Tsubasa Okaze & Akashi Mochida & Kazumasa Hanaoka, 2017. "Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    11. Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    12. Bahare Moradi & Rojin Akbari & Seyedeh Reyhaneh Taghavi & Farnaz Fardad & Abdulsalam Esmailzadeh & Mohammad Zia Ahmadi & Sina Attarroshan & Fatemeh Nickravesh & Jamal Jokar Arsanjani & Mehdi Amirkhani, 2023. "A Scenario-Based Spatial Multi-Criteria Decision-Making System for Urban Environment Quality Assessment: Case Study of Tehran," Land, MDPI, vol. 12(9), pages 1-24, August.
    13. Hemant Bherwani & Saima Anjum & Ankit Gupta & Anju Singh & Rakesh Kumar, 2021. "Establishing influence of morphological aspects on microclimatic conditions through GIS-assisted mathematical modeling and field observations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15857-15880, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    2. Sofia Costanzini & Chiara Ferrari & Francesca Despini & Alberto Muscio, 2021. "Standard Test Methods for Rating of Solar Reflectance of Built-Up Surfaces and Potential Use of Satellite Remote Sensors," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    4. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    5. Rossi, Federico & Castellani, Beatrice & Presciutti, Andrea & Morini, Elena & Filipponi, Mirko & Nicolini, Andrea & Santamouris, Matheos, 2015. "Retroreflective façades for urban heat island mitigation: Experimental investigation and energy evaluations," Applied Energy, Elsevier, vol. 145(C), pages 8-20.
    6. Sae Kyogoku & Hideki Takebayashi, 2023. "Effects of Upward Reflective Film Applied to Window Glass on Indoor and Outdoor Thermal Environments in a Mid-Latitude City," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    9. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    10. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    11. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    12. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    13. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    14. Martin Robinius & Alexander Otto & Konstantinos Syranidis & David S. Ryberg & Philipp Heuser & Lara Welder & Thomas Grube & Peter Markewitz & Vanessa Tietze & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany," Energies, MDPI, vol. 10(7), pages 1-23, July.
    15. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    16. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    17. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    18. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    19. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    20. Claudio Cubito & Federico Millo & Giulio Boccardo & Giuseppe Di Pierro & Biagio Ciuffo & Georgios Fontaras & Simone Serra & Marcos Otura Garcia & Germana Trentadue, 2017. "Impact of Different Driving Cycles and Operating Conditions on CO 2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle," Energies, MDPI, vol. 10(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:999-:d:79898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.