IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i6p940-d100336.html
   My bibliography  Save this article

Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives

Author

Listed:
  • Fabrizio Ascione

    (Department of Industrial Engineering, Università degli studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy)

  • Nicola Bianco

    (Department of Industrial Engineering, Università degli studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy)

  • Claudio De Stasio

    (Department of Industrial Engineering, Università degli studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy)

  • Gerardo Maria Mauro

    (Department of Industrial Engineering, Università degli studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy)

  • Giuseppe Peter Vanoli

    (Department of Medicine, Università degli studi del Molise, Via Cesare Gazzani 47, 86100 Campobasso, Italy)

Abstract

Scientific literature about energy retrofit focuses on single buildings, but the investigation of whole building stocks is particularly worthy because it can yield substantial energy, environmental and economic benefits. Hence, how to address large-scale energy retrofit of existing building stocks? The paper handles this issue by employing a methodology that provides a robust energy analysis of building categories. This is denoted as SLABE, “Simulation-based Large-scale uncertainty/sensitivity Analysis of Building Energy performance”. It was presented by the same authors and is here enhanced to investigate a whole and heterogeneous building stock that includes various categories. Each category is represented via a Representative Building Sample (RBS), which is defined through Latin hypercube sampling and uncertainty analysis. Hence, optimal retrofit packages are found in function of building location, intended use and construction type. Two families of optimal solutions are achieved. The first one collects the most energy-efficient (and thus sustainable) solutions, among the ones that produce global cost savings, thereby addressing the public perspective. The second one collects cost-optimal solutions thereby addressing the private perspective. EnergyPlus is employed as a simulation tool and coupled with MATLAB ® for data analysis and processing. The methodology is applied to a significant share of the Italian public administration building stock, which includes several building categories depending on location, use destination and construction type. The outcomes show huge potential energy and economic savings, and could support a deep energy renovation of the Italian building stock.

Suggested Citation

  • Fabrizio Ascione & Nicola Bianco & Claudio De Stasio & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2017. "Addressing Large-Scale Energy Retrofit of a Building Stock via Representative Building Samples: Public and Private Perspectives," Sustainability, MDPI, vol. 9(6), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:940-:d:100336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/6/940/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/6/940/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    2. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    3. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    4. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    5. Elena Morini & Ali G. Touchaei & Beatrice Castellani & Federico Rossi & Franco Cotana, 2016. "The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    6. Melo, A.P. & Cóstola, D. & Lamberts, R. & Hensen, J.L.M., 2014. "Development of surrogate models using artificial neural network for building shell energy labelling," Energy Policy, Elsevier, vol. 69(C), pages 457-466.
    7. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2015. "The Impact of Local Microclimate Boundary Conditions on Building Energy Performance," Sustainability, MDPI, vol. 7(7), pages 1-24, July.
    8. Ascione, Fabrizio & Böttcher, Olaf & Kaltenbrunner, Robert & Vanoli, Giuseppe Peter, 2017. "Methodology of the cost-optimality for improving the indoor thermal environment during the warm season. Presentation of the method and application to a new multi-storey building in Berlin," Applied Energy, Elsevier, vol. 185(P2), pages 1529-1541.
    9. Al-Ghandoor, A. & Jaber, J.O. & Al-Hinti, I. & Mansour, I.M., 2009. "Residential past and future energy consumption: Potential savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1262-1274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Aranda & Ignacio Zabalza & Andrea Conserva & Gema Millán, 2017. "Analysis of Energy Efficiency Measures and Retrofitting Solutions for Social Housing Buildings in Spain as a Way to Mitigate Energy Poverty," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    2. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    3. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    5. Dimitris A. Katsaprakakis & Nikos Papadakis & Efi Giannopoulou & Yiannis Yiannakoudakis & George Zidianakis & Michalis Kalogerakis & George Katzagiannakis & Eirini Dakanali & George M. Stavrakakis & A, 2023. "Rational Use of Energy in Sports Centres to Achieve Net Zero: The SAVE Project (Part A)," Energies, MDPI, vol. 16(10), pages 1-41, May.
    6. Peep Pihelo & Kalle Kuusk & Targo Kalamees, 2020. "Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Dario Cottafava & Giulia Sonetti & Paolo Gambino & Andrea Tartaglino, 2018. "Explorative Multidimensional Analysis for Energy Efficiency: DataViz versus Clustering Algorithms," Energies, MDPI, vol. 11(5), pages 1-18, May.
    8. Thrampoulidis, Emmanouil & Hug, Gabriela & Orehounig, Kristina, 2023. "Approximating optimal building retrofit solutions for large-scale retrofit analysis," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
    2. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    3. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    4. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    5. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    6. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    7. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Kwok Wai Mui & Ling Tim Wong & Manoj Kumar Satheesan & Anjana Balachandran, 2021. "A Hybrid Simulation Model to Predict the Cooling Energy Consumption for Residential Housing in Hong Kong," Energies, MDPI, vol. 14(16), pages 1-18, August.
    9. Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
    11. Gerardo Maria Mauro & Costantino Menna & Umberto Vitiello & Domenico Asprone & Fabrizio Ascione & Nicola Bianco & Andrea Prota & Giuseppe Peter Vanoli, 2017. "A Multi-Step Approach to Assess the Lifecycle Economic Impact of Seismic Risk on Optimal Energy Retrofit," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    12. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    13. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    14. Rocío Escandón & Rafael Suárez & Juan José Sendra & Fabrizio Ascione & Nicola Bianco & Gerardo Maria Mauro, 2019. "Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain," Energies, MDPI, vol. 12(12), pages 1-21, June.
    15. Germán Campos Gordillo & Germán Ramos Ruiz & Yves Stauffer & Stephan Dasen & Carlos Fernández Bandera, 2020. "EplusLauncher: An API to Perform Complex EnergyPlus Simulations in MATLAB ® and C#," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    16. Damianakis, Nikolaos & Mouli, Gautham Ram Chandra & Bauer, Pavol & Yu, Yunhe, 2023. "Assessing the grid impact of Electric Vehicles, Heat Pumps & PV generation in Dutch LV distribution grids," Applied Energy, Elsevier, vol. 352(C).
    17. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    18. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    19. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    20. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:940-:d:100336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.