IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5781-d812475.html
   My bibliography  Save this article

Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level

Author

Listed:
  • Alberto Speroni

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Andrea Giovanni Mainini

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

  • Andrea Zani

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy
    Permasteelisa North America, 1179 Centre Pointe Circle, Mendota Heights, MN 55120, USA)

  • Riccardo Paolini

    (School of Built Environment, Faculty of Arts, Design & Architecture, University of New South Wales, Sydney, NSW 2052, Australia)

  • Tommaso Pagnacco

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy
    Bollinger + Grohmann Ingegneria, Via Garofalo 31, 20133 Milano, Italy)

  • Tiziana Poli

    (Architecture, Built Environment and Construction Engineering Department, Politecnico di Milano, Via Ponzio 31, 20133 Milano, Italy)

Abstract

Urban climates are highly influenced by the ability of built surfaces to reflect solar radiation, and the use of high-albedo materials has been widely investigated as an effective option to mitigate urban overheating. While diffusely solar reflective walls have attracted concerns in the architectural and thermal comfort community, the potential of concave and polished surfaces, such as glass and metal panels, to cause extreme glare and localized thermal stress has been underinvestigated. Furthermore, there is the need for a systematic comparison of the solar concentration at the pedestrian level in front of tall buildings. Herein, we show the findings of an experimental campaign measuring the magnitude of the sunlight reflected by scale models reproducing archetypical tall buildings. Three 1:100 scaled prototypes with different shapes (classic vertical façade, 10% tilted façade, curved concave façade) and different finishing materials (representative of extremes in reflectance properties of building materials) were assessed. A specular surface was assumed as representative of a glazed façade under high-incidence solar angles, while selected light-diffusing materials were considered sufficient proxies for plaster finishing. With a diffusely reflective façade, the incident radiation at the pedestrian level in front of the building did not increase by more than 30% for any geometry. However, with a specular reflective (i.e., mirror-like) flat façade, the incident radiation at the pedestrian level increased by more than 100% and even by more than 300% with curved solar-concentrating geometries. In addition, a tool for the preliminary evaluation of the solar reflectance risk potential of a generic complex building shape is developed and presented. Our findings demonstrate that the solar concentration risk due to mirror-like surfaces in the built environment should be a primary concern in design and urban microclimatology.

Suggested Citation

  • Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5781-:d:812475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rossi, Federico & Pisello, Anna Laura & Nicolini, Andrea & Filipponi, Mirko & Palombo, Massimo, 2014. "Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model," Applied Energy, Elsevier, vol. 114(C), pages 621-631.
    2. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    3. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    4. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Bonenberg & Wojciech Skórzewski & Ling Qi & Yuhong Han & Wojciech Czekała & Mo Zhou, 2023. "An Energy-Saving-Oriented Approach to Urban Design—Application in the Local Conditions of Poznań Metropolitan Area (Poland)," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    2. Chungil Kim & Hyung-Jun Song, 2022. "Glare-Free Airport-Based Photovoltaic System via Optimization of Its Azimuth Angle," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    2. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    3. Anna Laura Pisello & Federico Rossi & Franco Cotana, 2014. "Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings," Energies, MDPI, vol. 7(4), pages 1-19, April.
    4. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    5. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    6. Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
    7. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    8. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    9. Dehwah, Ammar H.A. & Krarti, Moncef, 2021. "Energy performance of integrated adaptive envelope systems for residential buildings," Energy, Elsevier, vol. 233(C).
    10. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    11. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    12. Ou Deng & Yiqiu Li & Ruoshuang Li & Guangbin Yang, 2022. "Estimation of Forest Ecosystem Climate Regulation Service Based on Actual Evapotranspiration of New Urban Areas in Guanshanhu District, Guiyang, Guizhou Province, China," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    13. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    14. Haider Taha, 2021. "Development of an Urban Heat Mitigation Plan for the Greater Sacramento Valley, California, a Csa Koppen Climate Type," Sustainability, MDPI, vol. 13(17), pages 1-47, August.
    15. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    16. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
    17. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    18. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    19. Davies, Mike & Steadman, Philip & Oreszczyn, Tadj, 2008. "Strategies for the modification of the urban climate and the consequent impact on building energy use," Energy Policy, Elsevier, vol. 36(12), pages 4548-4551, December.
    20. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5781-:d:812475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.