IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i10d10.1007_s10668-022-02530-0.html
   My bibliography  Save this article

New developments and future challenges in reducing and controlling heat island effect in urban areas

Author

Listed:
  • Alireza Karimi

    (Universidad de Sevilla)

  • Pir Mohammad

    (Indian Institute of Technology)

  • Antonio García-Martínez

    (Universidad de Sevilla)

  • David Moreno-Rangel

    (Universidad de Sevilla)

  • Darya Gachkar

    (Shahid Beheshti University)

  • Sadaf Gachkar

    (Shahid Beheshti University)

Abstract

The collection of research conducted over the past decade on urban heat islands and its mitigation strategies reflects the new approaches of scientists, researchers, and government agencies on urban design and planning about the intensity of urban heat islands and their impact on urban texture. This study aims to analyze the trend of research on urban heat islands and strategies to reduce them during the last decade (2010–2020). This review has prepared from 91 research studies and evaluated the main measures to reduce the urban heat island that is commonly used today. In addition, the distribution based on the Köppen–Geiger climate classification, the review of different methodologies, and the funding of research has also been evaluated. Analysis has revealed that studies in humid subtropical (Cfa), hot summer Mediterranean (Csa), and temperate oceanic (Cfb) climates have the largest share among other climatic regions that some measures (urban parks, urban trees, green roofs) have played a critical role for researchers and policy makers more than other influential factors in reducing urban heat islands. It is also noticeable that the relative share of research provided in the four main groups of mitigation measures is almost the same; this similarity can be interpreted to support the argument that lack of funding does not have a significant effect on some mitigation measures.

Suggested Citation

  • Alireza Karimi & Pir Mohammad & Antonio García-Martínez & David Moreno-Rangel & Darya Gachkar & Sadaf Gachkar, 2023. "New developments and future challenges in reducing and controlling heat island effect in urban areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10485-10531, October.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:10:d:10.1007_s10668-022-02530-0
    DOI: 10.1007/s10668-022-02530-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02530-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02530-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleerekoper, Laura & van Esch, Marjolein & Salcedo, Tadeo Baldiri, 2012. "How to make a city climate-proof, addressing the urban heat island effect," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 30-38.
    2. Alessandra Battisti, 2020. "Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces," Energies, MDPI, vol. 13(21), pages 1-20, November.
    3. Elena Morini & Ali G. Touchaei & Beatrice Castellani & Federico Rossi & Franco Cotana, 2016. "The Impact of Albedo Increase to Mitigate the Urban Heat Island in Terni (Italy) Using the WRF Model," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    4. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    5. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    6. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    7. Elena Morini & Beatrice Castellani & Andrea Presciutti & Elisabetta Anderini & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Analysis of the Effect of Geometry and Façade Materials on Urban District’s Equivalent Albedo," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
    8. Andreou, E., 2014. "The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean," Renewable Energy, Elsevier, vol. 63(C), pages 587-596.
    9. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    10. Umut Erdem & K. Mert Cubukcu & Ayyoob Sharifi, 2021. "An analysis of urban form factors driving Urban Heat Island: the case of Izmir," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7835-7859, May.
    11. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    12. Jou-Man Huang & Liang-Chun Chen, 2020. "A Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    13. T. Shen & D. H. C. Chow & J. Darkwa, 2016. "Simulating the influence of microclimatic design on mitigating the Urban Heat Island effect in the Hangzhou Metropolitan Area of China," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(1), pages 130-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar Ashwini & Briti Sundar Sil & Abdulla Al Kafy & Hamad Ahmed Altuwaijri & Hrithik Nath & Zullyadini A. Rahaman, 2024. "Harnessing Machine Learning Algorithms to Model the Association between Land Use/Land Cover Change and Heatwave Dynamics for Enhanced Environmental Management," Land, MDPI, vol. 13(8), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    5. Natalia Przesmycka & Bartłomiej Kwiatkowski & Małgorzata Kozak, 2022. "The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland," Energies, MDPI, vol. 15(18), pages 1-26, September.
    6. Sara Di Lonardo & Susanna Mariani & Germina Giagnacovo & Antonella Marone & Salvatore Raimondi, 2019. "Green infrastructures for the energetic and environmental sustainability of cities," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 79-98.
    7. He, Q. & Tapia, F. & Reith, A., 2023. "Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    8. Hussain H. Al-Kayiem & Kelly Koh & Tri W. B. Riyadi & Marwan Effendy, 2020. "A Comparative Review on Greenery Ecosystems and Their Impacts on Sustainability of Building Environment," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    9. Shareef, Sundus & Altan, Hasim, 2022. "Urban block configuration and the impact on energy consumption: A case study of sinuous morphology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    10. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    11. Jing Xiao & Takaya Yuizono & Ruixuan Li, 2024. "Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    12. Tsung-Ming Tsao & Jing-Shiang Hwang & Sung-Tsun Lin & Charlene Wu & Ming-Jer Tsai & Ta-Chen Su, 2022. "Forest Bathing Is Better than Walking in Urban Park: Comparison of Cardiac and Vascular Function between Urban and Forest Parks," IJERPH, MDPI, vol. 19(6), pages 1-15, March.
    13. Bohong Zheng & Rui Guo & Komi Bernard Bedra & Yanfen Xiang, 2022. "Quantitative Evaluation of Urban Style at Street Level: A Case Study of Hengyang County, China," Land, MDPI, vol. 11(4), pages 1-28, March.
    14. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    15. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    17. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    18. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    19. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:10:d:10.1007_s10668-022-02530-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.