IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i1p988-1027d44875.html
   My bibliography  Save this article

Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

Author

Listed:
  • R. Michael Lehman

    (USDA-ARS North Central Agricultural Research Laboratory, 2923 Medary Ave., Brookings, SD 57006, USA)

  • Cynthia A. Cambardella

    (USDA-ARS National Laboratory for Agriculture and the Environment, 2110 University Blvd, Ames, IA 5001, USA)

  • Diane E. Stott

    (USDA-ARS National Soil Erosion Research Laboratory, 275 S. Russell St., West Lafayette, IN 47907, USA)

  • Veronica Acosta-Martinez

    (USDA-ARS Wind Erosion and Water Conservation Research Laboratory, 3810 4th Street, Lubbock, TX 79417, USA)

  • Daniel K. Manter

    (USDA-ARS Soil Plant Nutrient Research Unit, Natural Resources Research Center, 2150 Centre Ave., Bldg. D, Suite 100, Fort Collins, CO 80526-8119, USA)

  • Jeffrey S. Buyer

    (USDA-ARS Sustainable Agricultural Systems Laboratory, Room 124, 10300 Baltimore Ave., Bldg. 001, BARC-WEST, Beltsville, MD 20705-2350, USA)

  • Jude E. Maul

    (USDA-ARS Sustainable Agricultural Systems Laboratory, Room 124, 10300 Baltimore Ave., Bldg. 001, BARC-WEST, Beltsville, MD 20705-2350, USA)

  • Jeffrey L. Smith

    (USDA-ARS Land Management and Water Conservation Research, 215 Johnson Hall, Washington State University, Pullman, WA 99164, USA
    This author is deceased.)

  • Harold P. Collins

    (USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA)

  • Jonathan J. Halvorson

    (USDA-ARS Northern Great Plains Research Laboratory, 1701 10th Ave. SW, PO Box 459, Mandan, ND 58554, USA)

  • Robert J. Kremer

    (USDA-ARS Cropping Systems and Water Quality Research Laboratory, 269 Agricultural Engineering Bldg., University of Missouri, Columbia, MO 65211, USA
    This author has retired.)

  • Jonathan G. Lundgren

    (USDA-ARS North Central Agricultural Research Laboratory, 2923 Medary Ave., Brookings, SD 57006, USA)

  • Tom F. Ducey

    (USDA-ARS Coastal Plain Soil, Water and Plant Conservation Research Center, 2611 W. Lucas St, Florence, SC 29501, USA)

  • Virginia L. Jin

    (USDA-ARS Agroecosystem Management Research Unit, 137 Kiem Hall, University of Nebraska, Lincoln, NE 68583, USA)

  • Douglas L. Karlen

    (USDA-ARS National Laboratory for Agriculture and the Environment, 2110 University Blvd, Ames, IA 5001, USA)

Abstract

Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms), characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i) increase nutrient availability for production of high yielding, high quality crops; (ii) protect crops from pests, pathogens, weeds; and (iii) manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

Suggested Citation

  • R. Michael Lehman & Cynthia A. Cambardella & Diane E. Stott & Veronica Acosta-Martinez & Daniel K. Manter & Jeffrey S. Buyer & Jude E. Maul & Jeffrey L. Smith & Harold P. Collins & Jonathan J. Halvors, 2015. "Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation," Sustainability, MDPI, vol. 7(1), pages 1-40, January.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:1:p:988-1027:d:44875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/1/988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/1/988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bradley J. Cardinale, 2011. "Biodiversity improves water quality through niche partitioning," Nature, Nature, vol. 472(7341), pages 86-89, April.
    2. Lieven Wittebolle & Massimo Marzorati & Lieven Clement & Annalisa Balloi & Daniele Daffonchio & Kim Heylen & Paul De Vos & Willy Verstraete & Nico Boon, 2009. "Initial community evenness favours functionality under selective stress," Nature, Nature, vol. 458(7238), pages 623-626, April.
    3. T. Helgason & T. J. Daniell & R. Husband & A. H. Fitter & J. P. W. Young, 1998. "Ploughing up the wood-wide web?," Nature, Nature, vol. 394(6692), pages 431-431, July.
    4. S. Leininger & T. Urich & M. Schloter & L. Schwark & J. Qi & G. W. Nicol & J. I. Prosser & S. C. Schuster & C. Schleper, 2006. "Archaea predominate among ammonia-oxidizing prokaryotes in soils," Nature, Nature, vol. 442(7104), pages 806-809, August.
    5. David W. Crowder & Tobin D. Northfield & Michael R. Strand & William E. Snyder, 2010. "Organic agriculture promotes evenness and natural pest control," Nature, Nature, vol. 466(7302), pages 109-112, July.
    6. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhao & Junying Li & Kening Wu & Long Kang, 2021. "Cultivated Land Use Zoning Based on Soil Function Evaluation from the Perspective of Black Soil Protection," Land, MDPI, vol. 10(6), pages 1-29, June.
    2. Lisa Lobry de Bruyn & Susan Andrews, 2016. "Are Australian and United States Farmers Using Soil Information for Soil Health Management?," Sustainability, MDPI, vol. 8(4), pages 1-33, March.
    3. Dean C. Stronge & Bryan A. Stevenson & Garth R. Harmsworth & Robyn L. Kannemeyer, 2020. "A Well-Being Approach to Soil Health—Insights from Aotearoa New Zealand," Sustainability, MDPI, vol. 12(18), pages 1-12, September.
    4. Yingying Xing & Xiaoli Niu & Ning Wang & Wenting Jiang & Yaguang Gao & Xiukang Wang, 2020. "The Correlation between Soil Nutrient and Potato Quality in Loess Plateau of China Based on PLSR," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    5. Majid, Maliqa & Khan, Junaid N. & Ahmad Shah, Qazi Muneeb & Masoodi, Khalid Z. & Afroza, Baseerat & Parvaze, Saqib, 2021. "Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Babacar Thioye & Marc Legras & Lisa Castel & François Hirissou & Naouel Chaftar & Isabelle Trinsoutrot-Gattin, 2021. "Understanding Arbuscular Mycorrhizal Colonization in Walnut Plantations: The Contribution of Cover Crops and Soil Microbial Communities," Agriculture, MDPI, vol. 12(1), pages 1-12, December.
    7. Tanha, Maryam & Mohtar, Rabi H. & Assi, Amjad T. & Awal, Ripendra & Fares, Ali, 2024. "Soil hydrostructural parameters under various soil management practices," Agricultural Water Management, Elsevier, vol. 292(C).
    8. Carol Smith & Sadeepa Jayathunga & Pablo Gregorini & Fabiellen C. Pereira & Wendy McWilliam, 2022. "Using Soil Sustainability and Resilience Concepts to Support Future Land Management Practice: A Case Study of Mt Grand Station, Hāwea, New Zealand," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
    9. Douglas L. Karlen & Charles W. Rice, 2015. "Soil Degradation: Will Humankind Ever Learn?," Sustainability, MDPI, vol. 7(9), pages 1-12, September.
    10. Jarosław Grządziel & Karolina Furtak & Anna Gałązka, 2018. "Community-Level Physiological Profiles of Microorganisms from Different Types of Soil That Are Characteristic to Poland—A Long-Term Microplot Experiment," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    11. repec:mth:jas888:v:6:y:2018:i:3:p:1-33 is not listed on IDEAS
    12. Jean L. Steiner & David D. Briske & David P. Brown & Caitlin M. Rottler, 2018. "Vulnerability of Southern Plains agriculture to climate change," Climatic Change, Springer, vol. 146(1), pages 201-218, January.
    13. Anghinoni, Guilherme & Anghinoni, Fernanda Brunetta Godinho & Tormena, Cássio Antonio & Braccini, Alessandro Lucca & de Carvalho Mendes, Ieda & Zancanaro, Leandro & Lal, Rattan, 2021. "Conservation agriculture strengthen sustainability of Brazilian grain production and food security," Land Use Policy, Elsevier, vol. 108(C).
    14. Caroline Brock & Douglas Jackson-Smith & Steven Culman & Douglas Doohan & Catherine Herms, 2021. "Soil balancing within organic farming: negotiating meanings and boundaries in an alternative agricultural community of practice," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(2), pages 449-465, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carla L. Abán & Giovanni Larama & Antonella Ducci & Jorgelina Huidobro & Michel Abanto & Silvina Vargas-Gil & Carolina Pérez-Brandan, 2022. "Soil Properties and Bacterial Communities Associated with the Rhizosphere of the Common Bean after Using Brachiaria brizantha as a Service Crop: A 10-Year Field Experiment," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    2. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    3. P. Wang & J.J. Zhang & B. Shu & R.X. Xia, 2012. "Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(7), pages 302-308.
    4. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Kehinde Abraham Odelade & Olubukola Oluranti Babalola, 2019. "Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    6. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    7. Samiran Banerjee & Cheng Zhao & Gina Garland & Anna Edlinger & Pablo García-Palacios & Sana Romdhane & Florine Degrune & David S. Pescador & Chantal Herzog & Lennel A. Camuy-Velez & Jordi Bascompte & , 2024. "Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. La Notte, Alessandra & Maes, Joachim & Dalmazzone, Silvana & Crossman, Neville D. & Grizzetti, Bruna & Bidoglio, Giovanni, 2017. "Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention," Ecosystem Services, Elsevier, vol. 23(C), pages 18-29.
    9. Simoncini, Riccardo & Ring, Irene & Sandström, Camilla & Albert, Christian & Kasymov, Ulan & Arlettaz, Raphael, 2019. "Constraints and opportunities for mainstreaming biodiversity and ecosystem services in the EU’s Common Agricultural Policy: Insights from the IPBES assessment for Europe and Central Asia," Land Use Policy, Elsevier, vol. 88(C).
    10. Chen, Miao & Liu, Shujun & Yuan, Xufeng & Li, Qing X. & Wang, Fengzhong & Xin, Fengjiao & Wen, Boting, 2021. "Methane production and characteristics of the microbial community in the co-digestion of potato pulp waste and dairy manure amended with biochar," Renewable Energy, Elsevier, vol. 163(C), pages 357-367.
    11. Jin Xu & Peifang Wang & Yi Li & Lihua Niu & Zhen Xing, 2019. "Shifts in the Microbial Community of Activated Sludge with Different COD/N Ratios or Dissolved Oxygen Levels in Tibet, China," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
    12. Garba, Ismail I. & Bell, Lindsay W. & Chauhan, Bhagirath S. & Williams, Alwyn, 2024. "Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems," Agricultural Systems, Elsevier, vol. 214(C).
    13. Shyamal K. De & Bhargab Chattopadhyay, 2017. "Minimum Risk Point Estimation of Gini Index," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 247-277, November.
    14. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    15. Oliveira, Eduardo & Leuthard, Jasmin & Tobias, Silvia, 2019. "Spatial planning instruments for cropland protection in Western European countries," Land Use Policy, Elsevier, vol. 87(C).
    16. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    17. Lei Zhang & Yu Cheng & Guang Gao & Jiahu Jiang, 2019. "Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China," IJERPH, MDPI, vol. 16(20), pages 1-18, October.
    18. X.X. Dong & L.L. Zhang & Z.J. Wu & H.W. Zhang & P. Gong, 2013. "The response of nitrifier, N-fixer and denitrifier gene copy numbers to the nitrification inhibitor 3,4-dimethylpyrazole phosphate," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(9), pages 398-403.
    19. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Peter Horton & Steve A. Banwart & Dan Brockington & Garrett W. Brown & Richard Bruce & Duncan Cameron & Michelle Holdsworth & S. C. Lenny Koh & Jurriaan Ton & Peter Jackson, 2017. "An agenda for integrated system-wide interdisciplinary agri-food research," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 195-210, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:1:p:988-1027:d:44875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.