IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i7p3202-3223d27441.html
   My bibliography  Save this article

Understanding Resilient Urban Futures: A Systemic Modelling Approach

Author

Listed:
  • Pengjun Zhao

    (New Zealand Centre for Sustainable Cities, University of Otago, 23A Mein Street, Newtown, Wellington 6242, New Zealand)

  • Ralph Chapman

    (School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, PO BOX 600, Wellington 6140, New Zealand)

  • Edward Randal

    (New Zealand Centre for Sustainable Cities, University of Otago, 23A Mein Street, Newtown, Wellington 6242, New Zealand)

  • Philippa Howden-Chapman

    (New Zealand Centre for Sustainable Cities, University of Otago, 23A Mein Street, Newtown, Wellington 6242, New Zealand)

Abstract

The resilience of cities in response to natural disasters and long-term climate change has emerged as a focus of academic and policy attention. In particular, how to understand the interconnectedness of urban and natural systems is a key issue. This paper introduces an urban model that can be used to evaluate city resilience outcomes under different policy scenarios. The model is the Wellington Integrated Land Use-Transport-Environment Model (WILUTE). It considers the city ( i.e. , Wellington) as a complex system characterized by interactions between a variety of internal urban processes (social, economic and physical) and the natural environment. It is focused on exploring the dynamic relations between human activities (the geographic distribution of housing and employment, infrastructure layout, traffic flows and energy consumption), environmental effects (carbon emissions, influences on local natural and ecological systems) and potential natural disasters (e.g., inundation due to sea level rise and storm events) faced under different policy scenarios. The model gives insights that are potentially useful for policy to enhance the city’s resilience, by modelling outcomes, such as the potential for reduction in transportation energy use, and changes in the vulnerability of the city’s housing stock and transport system to sea level rise.

Suggested Citation

  • Pengjun Zhao & Ralph Chapman & Edward Randal & Philippa Howden-Chapman, 2013. "Understanding Resilient Urban Futures: A Systemic Modelling Approach," Sustainability, MDPI, vol. 5(7), pages 1-22, July.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:7:p:3202-3223:d:27441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/7/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/7/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Grazi & Jeroen C.J.M. van den Bergh & Jos N. van Ommeren, 2008. "An Empirical Analysis of Urban Form, Transport, and Global Warming," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-122.
    2. Ekins, Paul, 1996. "How large a carbon tax is justified by the secondary benefits of CO2 abatement?," Resource and Energy Economics, Elsevier, vol. 18(2), pages 161-187, June.
    3. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Qing-Long & Qurashi, Moeid & Antoniou, Constantinos, 2023. "Simulation-based policy analysis: The case of urban speed limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    2. Jorge Salas & Víctor Yepes, 2020. "Enhancing Sustainability and Resilience through Multi-Level Infrastructure Planning," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    3. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    4. Tia D. INSANI & Wiwandari HANDAYANI & Mega F. K. ASTUTI & Kami H. BASUKI & Bagus H. SETIADJI, 2021. "A Performance Study Of Bus Rapid Transit Lite: Toward A Resilient Semarang City," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 105-118, September.
    5. Wei Wang & Zhentian Sun & Zhiyuan Wang & Yue Liu & Jun Chen, 2020. "Multi-Objective Optimization Model for P + R and K + R Facilities’ Collaborative Layout Decision," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    6. Donghyun Kim & Up Lim, 2016. "Urban Resilience in Climate Change Adaptation: A Conceptual Framework," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    7. Liu Yang & Koen H. van Dam & Lufeng Zhang, 2020. "Developing Goals and Indicators for the Design of Sustainable and Integrated Transport Infrastructure and Urban Spaces," Sustainability, MDPI, vol. 12(22), pages 1-34, November.
    8. Marcin Wołek & Aleksander Jagiełło & Michał Wolański, 2021. "Multi-Criteria Analysis in the Decision-Making Process on the Electrification of Public Transport in Cities in Poland: A Case Study Analysis," Energies, MDPI, vol. 14(19), pages 1-13, October.
    9. Marcelo Gomes Miguez & Aline Pires Veról & Matheus Martins De Sousa & Osvaldo Moura Rezende, 2015. "Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil," Sustainability, MDPI, vol. 7(8), pages 1-30, August.
    10. Tálita Santos & Marcelino Aurélio Silva & Vicente Aprigliano Fernandes & Greg Marsden, 2020. "Resilience and Vulnerability of Public Transportation Fare Systems: The Case of the City of Rio De Janeiro, Brazil," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
    11. Joreintje Dingena Mackenbach & Edward Randal & Pengjun Zhao & Philippa Howden-Chapman, 2016. "The Influence of Urban Land-Use and Public Transport Facilities on Active Commuting in Wellington, New Zealand: Active Transport Forecasting Using the WILUTE Model," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    12. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    13. Sanober Naheed & Salman Shooshtarian, 2022. "The Role of Cultural Heritage in Promoting Urban Sustainability: A Brief Review," Land, MDPI, vol. 11(9), pages 1-17, September.
    14. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    15. Héctor Hugo & Felipe Espinoza & Ivetheyamel Morales & Elías Ortiz & Saúl Pérez & Galo Salcedo, 2018. "Delta Project: Towards a Sustainable Campus," Sustainability, MDPI, vol. 10(10), pages 1-27, October.
    16. Jorge Salas & Víctor Yepes, 2019. "VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain," Sustainability, MDPI, vol. 11(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grazi, Fabio & van den Bergh, Jeroen C.J.M., 2008. "Spatial organization, transport, and climate change: Comparing instruments of spatial planning and policy," Ecological Economics, Elsevier, vol. 67(4), pages 630-639, November.
    2. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    3. Massimiliano Mazzanti & Valeria Costantini & Susanna Mancinelli & Massimilano Corradini, 2011. "Environmental and Innovation Performance in a Dynamic Impure Public Good Framework," Working Papers 201117, University of Ferrara, Department of Economics.
    4. Cecere, Grazia & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Waste prevention and social preferences: the role of intrinsic and extrinsic motivations," Ecological Economics, Elsevier, vol. 107(C), pages 163-176.
    5. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    6. Paul Drummond, 2021. "Assessing City Governance for Low-Carbon Mobility in London," Sustainability, MDPI, vol. 13(5), pages 1-24, February.
    7. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    8. Matthias Ruth, 2018. "Regional science in a resource-constrained world," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(2), pages 229-236, September.
    9. Kverndokk,S. & Rosendahl,E., 2000. "CO2 mitigation costs and ancillary benefits in the Nordic countries, the UK and Ireland : a survey," Memorandum 34/2000, Oslo University, Department of Economics.
    10. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    11. Sébastien Dessus & David O'Connor, 2003. "Climate Policy without Tears CGE-Based Ancillary Benefits Estimates for Chile," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(3), pages 287-317, July.
    12. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    13. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    14. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    15. Raj Kumar & Yuan Chun & Tanjia Binte Zafar & Nora Ahmed Mothafar, 2019. "Building Sustainable Green Environment by Reducing Traffic Jam: The Role of Sharing Economy as Ride-sharing An Overview of Dhaka Metropolitan City," International Journal of Science and Business, IJSAB International, vol. 3(6), pages 164-173.
    16. Kishita, Yusuke & Höjer, Mattias & Quist, Jaco, 2024. "Consolidating backcasting: A design framework towards a users’ guide," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    17. Can Wang & Jie Lin & Wenjia Cai & ZhongXiang Zhang, 2013. "Policies and Practices of Low Carbon City Development in China," Energy & Environment, , vol. 24(7-8), pages 1347-1372, December.
    18. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    19. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    20. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:7:p:3202-3223:d:27441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.