IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p647-d309266.html
   My bibliography  Save this article

Resilience and Vulnerability of Public Transportation Fare Systems: The Case of the City of Rio De Janeiro, Brazil

Author

Listed:
  • Tálita Santos

    (Transportation Engineering Program, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Rio de Janeiro 21941-914, Brazil
    Department of Production Engineering, Federal University of Piaui, Av. Universitária, Teresina 64049-550, Brazil)

  • Marcelino Aurélio Silva

    (Transportation Engineering Program, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Rio de Janeiro 21941-914, Brazil)

  • Vicente Aprigliano Fernandes

    (Instituto de Geografia, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2241, Valparaíso 2362807, Chile)

  • Greg Marsden

    (Institute for Transport Studies, University of Leeds, 34-40 University Road, Leeds LS2 9JT, UK)

Abstract

Resilience is the ability of a system to adapt, persist, and transform as a reaction to threats, which may be external or internal to the system, while vulnerability is the state of being susceptible to harm from exposure to stresses associated with environmental and social change and from the inability to adapt. Based on a study of the threats that can affect urban mobility, we identified a gap regarding the analysis of the levels of resilience and vulnerability in the face of subsidy threats that can severely affect developing countries. This article measures the level of resilience and vulnerability due to the absence of public transport fare subsidies. For this purpose, we developed an approach based on fuzzy logic and applied it in 33 administrative regions (ARs) of the city of Rio de Janeiro, Brazil. We obtained four matrices of the levels of vulnerability and resilience of each of the regions as an origin and destination. The results show that areas nearest to the downtown region and those with high-capacity transportation available (commuter train and/or subway, systems with many transfer points) are more resilient, while a high level of vulnerability is associated with low income, negative socioeconomic indicators, and the predominance of road transportation to reach jobs. The contribution of this paper is the method applied to analyse the levels of vulnerability and resilience of public transport, which includes a threat that can cause a rupture that impacts routines and job accessibility in a region.

Suggested Citation

  • Tálita Santos & Marcelino Aurélio Silva & Vicente Aprigliano Fernandes & Greg Marsden, 2020. "Resilience and Vulnerability of Public Transportation Fare Systems: The Case of the City of Rio De Janeiro, Brazil," Sustainability, MDPI, vol. 12(2), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:647-:d:309266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    2. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    3. Annunziata Esposito Amideo & Stefano Starita & Maria Paola Scaparra, 2019. "Assessing Protection Strategies for Urban Rail Transit Systems: A Case-Study on the Central London Underground," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    4. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    5. Leung, Abraham & Burke, Matthew & Perl, Anthony & Cui, Jianqiang, 2018. "The peak oil and oil vulnerability discourse in urban transport policy: A comparative discourse analysis of Hong Kong and Brisbane," Transport Policy, Elsevier, vol. 65(C), pages 5-18.
    6. Pengjun Zhao & Ralph Chapman & Edward Randal & Philippa Howden-Chapman, 2013. "Understanding Resilient Urban Futures: A Systemic Modelling Approach," Sustainability, MDPI, vol. 5(7), pages 1-22, July.
    7. Boisjoly, Geneviève & Moreno-Monroy, Ana Isabel & El-Geneidy, Ahmed, 2017. "Informality and accessibility to jobs by public transit: Evidence from the São Paulo Metropolitan Region," Journal of Transport Geography, Elsevier, vol. 64(C), pages 89-96.
    8. Coaffee, Jon, 2008. "Risk, resilience, and environmentally sustainable cities," Energy Policy, Elsevier, vol. 36(12), pages 4633-4638, December.
    9. Cinta Lomba-Fernández & Josune Hernantes & Leire Labaka, 2019. "Guide for Climate-Resilient Cities: An Urban Critical Infrastructures Approach," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    10. Wojciech Sałabun & Krzysztof Palczewski & Jarosław Wątróbski, 2019. "Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    11. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    12. Anna Bozza & Domenico Asprone & Gaetano Manfredi, 2015. "Developing an integrated framework to quantify resilience of urban systems against disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1729-1748, September.
    13. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    14. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farnaz Khaghani & Farrokh Jazizadeh, 2020. "mD-Resilience: A Multi-Dimensional Approach for Resilience-Based Performance Assessment in Urban Transportation," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Weichang Kong & Dorina Pojani & Neil Sipe & Dominic Stead, 2021. "Transport Poverty in Chinese Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 13(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    2. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Pan, Shouzheng & Ling, Shuai & Jia, Ning & Liu, Yiliu & He, Zhengbing, 2024. "On the dynamic vulnerability of an urban rail transit system and the impact of human mobility," Journal of Transport Geography, Elsevier, vol. 116(C).
    5. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    6. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    7. Ziyi Wang & Zengqiao Chen & Cuiping Ma & Ronald Wennersten & Qie Sun, 2022. "Nationwide Evaluation of Urban Energy System Resilience in China Using a Comprehensive Index Method," Sustainability, MDPI, vol. 14(4), pages 1-36, February.
    8. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Nogal, M. & Honfi, D., 2019. "Assessment of road traffic resilience assuming stochastic user behaviour," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 72-83.
    11. Mingyu Chen & Huapu Lu, 2020. "Analysis of Transportation Network Vulnerability and Resilience within an Urban Agglomeration: Case Study of the Greater Bay Area, China," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    12. Jansuwan, Sarawut & Chen, Anthony & Xu, Xiangdong, 2021. "Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 154-171.
    13. Nan Zhang & Daniel J. Graham & Daniel Hörcher & Prateek Bansal, 2021. "A causal inference approach to measure the vulnerability of urban metro systems," Transportation, Springer, vol. 48(6), pages 3269-3300, December.
    14. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    15. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    16. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    17. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    18. Roberto Cardinale, 2022. "State-Owned Enterprises’ Reforms and their Implications for the Resilience and Vulnerability of the Chinese Economy: Evidence from the Banking, Energy and Telecom Sectors," Networks and Spatial Economics, Springer, vol. 22(3), pages 489-514, September.
    19. Zhu, Jingjing & Xu, Xiangdong & Wang, Zijian, 2023. "Economic evaluation of redundancy design for transportation networks under disruptions: Framework and case study," Transport Policy, Elsevier, vol. 142(C), pages 70-83.
    20. Andrea Di Ronco & Francesca Giacobbo & Antonio Cammi, 2020. "A Kalman Filter-Based Approach for Online Source-Term Estimation in Accidental Radioactive Dispersion Events," Sustainability, MDPI, vol. 12(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:647-:d:309266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.