IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp155-163.html
   My bibliography  Save this article

Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations

Author

Listed:
  • Ledgard, Stewart F.
  • Wei, Sha
  • Wang, Xiaoqin
  • Falconer, Shelley
  • Zhang, Nannan
  • Zhang, Xiying
  • Ma, Lin

Abstract

Three dairy farm systems in China and in New Zealand (NZ) varying in intensity based on level of use of brought-in crop feeds were selected from surveyed data. Nitrogen (N) emissions were estimated using country-specific N and life cycle assessment models. Milk production per cow increased with increased use of grain-based feeds but there was no whole-system difference in energy and land use resource efficiency. The N footprint (∑reactive-N emissions kg-1 milk for cradle-to-farm-gate) was 1.3–2.3 times higher for the housed-cow Chinese farm systems than the year-round pasture-grazing NZ farm systems, associated with greater emissions of all forms of reactive-N. The N footprint decreased with increased feed use and milk production in both countries, mainly due to decreased ammonia emissions. There were similar trends in carbon (C) footprint (total greenhouse gas emissions) of milk, except within NZ where there was no change with feeding level. In NZ, the N loss to water kg-1 milk increased due to the contribution from feed crops. The source of feed was an important determinant of environmental impacts, and changing to low N-footprint feeds decreased the N footprint of milk by up to 10% in both countries. However, manure management was the dominant contributor to the N footprint for all farms, and particularly in China. Mitigation analysis of Chinese farm systems showed the potential to decrease the N footprint of milk by over 30% with improved manure management practices, particularly from utilizing manure that is currently discharged. The largest mitigation potential (up to -25%) in NZ was from ceasing N fertilizer use on pasture and relying on clover N2 fixation. Scenario analysis for late-autumn/winter housing of cows in NZ decreased N loss to water but greatly increased ammonia emissions, resulting in an increase in N and C footprints of up to 21%. Thus, Chinese dairy farms can improve environmental efficiency through sourcing low-impact feeds, improved manure management and integrating manure recycling with feed crops. In contrast, NZ farms can improve environmental efficiency through efficient use of grazed legume-based pastures rather than using crop-feeds or cow housing systems.

Suggested Citation

  • Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:155-163
    DOI: 10.1016/j.agwat.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418307807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    2. David Tilman & Michael Clark, 2014. "Global diets link environmental sustainability and human health," Nature, Nature, vol. 515(7528), pages 518-522, November.
    3. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    4. Ben G. Li & Yibei Liu, 2018. "The Production Life Cycle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1139-1170, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beike Sumfleth & Stefan Majer & Daniela Thrän, 2023. "A Review of Trade-Offs in Low ILUC-Risk Certification for Biofuels—Towards an Integrated Assessment Framework," Sustainability, MDPI, vol. 15(23), pages 1-41, November.
    2. Chenyang Liu & Xiuyi Shi & Cuixia Li, 2023. "Digital Technology, Factor Allocation and Environmental Efficiency of Dairy Farms in China: Based on Carbon Emission Constraint Perspective," Sustainability, MDPI, vol. 15(21), pages 1-22, October.
    3. Milyausha Lukyanova & Vitaliy Kovshov & Zariya Zalilova & Vasily Lukyanov & Irek Araslanbaev, 2021. "A systemic comparative economic approach efficiency of fodder production," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-17, December.
    4. Sheng Hang & Jing Li & Xiangbo Xu & Yun Lyu & Yang Li & Huarui Gong & Yan Xu & Zhu Ouyang, 2021. "An Optimization Scheme of Balancing GHG Emission and Income in Circular Agriculture System," Sustainability, MDPI, vol. 13(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koesling, Matthias & Hansen, Sissel & Bleken, Marina Azzaroli, 2017. "Variations in nitrogen utilisation on conventional and organic dairy farms in Norway," Agricultural Systems, Elsevier, vol. 157(C), pages 11-21.
    2. Leach, Allison M. & Emery, Kyle A. & Gephart, Jessica & Davis, Kyle F. & Erisman, Jan Willem & Leip, Adrian & Pace, Michael L. & D’Odorico, Paolo & Carr, Joel & Noll, Laura Cattell & Castner, Elizabet, 2016. "Environmental impact food labels combining carbon, nitrogen, and water footprints," Food Policy, Elsevier, vol. 61(C), pages 213-223.
    3. Irene Blanco-Gutiérrez & Consuelo Varela-Ortega & Rhys Manners, 2020. "Evaluating Animal-Based Foods and Plant-Based Alternatives Using Multi-Criteria and SWOT Analyses," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    4. Castro, P. & Pedroso, R. & Lautenbach, S. & Vicens, R., 2020. "Farmland abandonment in Rio de Janeiro: Underlying and contributory causes of an announced development," Land Use Policy, Elsevier, vol. 95(C).
    5. Rami Al Sidawi & Teo Urushadze & Angelika Ploeger, 2020. "Changes in Dairy Products Value Chain in Georgia," Sustainability, MDPI, vol. 12(15), pages 1-29, July.
    6. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    7. Jongeneel, Roel & Polman, Nico & van der Ham, Corinda, 2014. "Costs and benefits associated with the externalities generated by Dutch agriculture," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182705, European Association of Agricultural Economists.
    8. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    9. Xavier Simon & Damián Copena & David Pérez-Neira, 2023. "Assessment of the diet-environment-health-cost quadrilemma in public school canteens. an LCA case study in Galicia (Spain)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12543-12567, November.
    10. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    11. Jan Willem Erisman & Allison Leach & Albert Bleeker & Brooke Atwell & Lia Cattaneo & James Galloway, 2018. "An Integrated Approach to a Nitrogen Use Efficiency (NUE) Indicator for the Food Production–Consumption Chain," Sustainability, MDPI, vol. 10(4), pages 1-29, March.
    12. Peter Horton, 2017. "We need radical change in how we produce and consume food," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1323-1327, December.
    13. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    14. Bonamigo, Andrei & Ferenhof, Helio Aisenberg & Forcellini, Fernando Antonio, 2017. "Dairy Ecosystem Barriers Exposed - A Case Study In A Family Production Unit At Western Santa Catarina, Brazil," Organizações Rurais e Agroindustriais/Rural and Agro-Industrial Organizations, Universidade Federal de Lavras, Departamento de Administracao e Economia, vol. 19(1), January.
    15. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    16. Jindřich Špička & Zdeňka Náglová, 2022. "Consumer segmentation in the meat market - The case study of Czech Republic," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(2), pages 68-77.
    17. Théodore Nikiema & Eugène C. Ezin & Sylvain Kpenavoun Chogou, 2023. "Bibliometric Analysis of the State of Research on Agroecology Adoption and Methods Used for Its Assessment," Sustainability, MDPI, vol. 15(21), pages 1-18, November.
    18. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    19. Bazoche, Pascale & Guinet, Nicolas & Poret, Sylvaine & Teyssier, Sabrina, 2023. "Does the provision of information increase the substitution of animal proteins with plant-based proteins? An experimental investigation into consumer choices," Food Policy, Elsevier, vol. 116(C).
    20. Melanie Speck & Katrin Bienge & Lynn Wagner & Tobias Engelmann & Sebastian Schuster & Petra Teitscheid & Nina Langen, 2020. "Creating Sustainable Meals Supported by the NAHGAST Online Tool—Approach and Effects on GHG Emissions and Use of Natural Resources," Sustainability, MDPI, vol. 12(3), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:155-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.