IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p2141-d1603498.html
   My bibliography  Save this article

Prospects of Solar Energy in the Context of Greening Maritime Transport

Author

Listed:
  • Olga Petrychenko

    (Theory and Structure of a Ship Department, National University “Odessa Maritime Academy”, Didrikhson Str. 8, 65052 Odessa, Ukraine)

  • Maksym Levinskyi

    (Theory and Structure of a Ship Department, National University “Odessa Maritime Academy”, Didrikhson Str. 8, 65052 Odessa, Ukraine)

  • Sergey Goolak

    (Department of Electromechanics and Rolling Stock of Railways, State University of Infrastructure and Technologies, Kyrylivska Str. 9, 04071 Kyiv, Ukraine)

  • Vaidas Lukoševičius

    (Department of Transport Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, 44249 Kaunas, Lithuania)

Abstract

The aim of this article is to examine existing technologies for the use of electrical energy and to develop proposals for their improvement on maritime vessels. As a criterion for evaluating the effectiveness of alternative energy sources on ships, factors such as greenhouse gas emissions levels, production and transportation characteristics, onboard storage conditions, and technoeconomic indicators have been proposed. The analysis of fuel types reveals that hydrogen has zero greenhouse gas emissions. However, transportation and storage issues, along with the high investment required for implementation, pose barriers to the widespread use of hydrogen as fuel for maritime vessels. This article demonstrates that solar energy can serve as an alternative to gases and liquid fuels in maritime transport. The technologies and challenges in utilizing solar energy for shipping are analyzed, trends in solar energy for maritime transport are discussed, and future research directions for the use of solar energy in the maritime sector are proposed. The most significant findings include the identification of future research directions in the application of solar energy in the maritime sector, including the adaptation of concentrated solar power (CSP) systems for maritime applications; the development of materials and designs for solar panels specifically tailored to marine conditions; the development of methods for assessing the long-term economic benefits of using solar energy on vessels; and the creation of regulatory frameworks and international standards for the use of solar energy on ships. Furthermore, for hybrid photovoltaic and diesel power systems, promising research directions could include efforts to implement direct torque control systems instead of field-orientated control systems, as well as working on compensating higher harmonics in the phase current spectra of asynchronous motors.

Suggested Citation

  • Olga Petrychenko & Maksym Levinskyi & Sergey Goolak & Vaidas Lukoševičius, 2025. "Prospects of Solar Energy in the Context of Greening Maritime Transport," Sustainability, MDPI, vol. 17(5), pages 1-45, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2141-:d:1603498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/2141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/2141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Parris & Konstantinos Spinthiropoulos & Konstantina Ragazou & Anna Giovou & Constantinos Tsanaktsidis, 2024. "Methanol, a Plugin Marine Fuel for Green House Gas Reduction—A Review," Energies, MDPI, vol. 17(3), pages 1-28, January.
    2. Sergii V. Sagin & Sergii S. Sagin & Volodymyr Madey, 2023. "Analysis of methods of managing the environmental safety of the navigation passage of ships of maritime transport," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 4(3(72)), pages 33-42, August.
    3. Seyed Behbood Issa Zadeh & José Santos López Gutiérrez & M. Dolores Esteban & Gonzalo Fernández-Sánchez & Claudia Lizette Garay-Rondero, 2023. "Scope of the Literature on Efforts to Reduce the Carbon Footprint of Seaports," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    4. Mohamad Issa & Adrian Ilinca & Fahed Martini, 2022. "Ship Energy Efficiency and Maritime Sector Initiatives to Reduce Carbon Emissions," Energies, MDPI, vol. 15(21), pages 1-37, October.
    5. Porntip Junsang & Chorkaew Jaturanonda & Teeradej Wuttipornpun & Mayurachat Watcharejyothin, 2023. "Liquefied Natural Gas Logistics Management Through Optimal Road-Rail Intermodal Logistics Planning Considering Community Safety: A Case Study in Thailand," International Journal of Knowledge and Systems Science (IJKSS), IGI Global, vol. 14(1), pages 1-25, January.
    6. Mohamed Benghanem & Sofiane Haddad & Ahmed Alzahrani & Adel Mellit & Hamad Almohamadi & Muna Khushaim & Mohamed Salah Aida, 2023. "Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    7. Alexandra Fratila (Adam) & Ioana Andrada Gavril (Moldovan) & Sorin Cristian Nita & Andrei Hrebenciuc, 2021. "The Importance of Maritime Transport for Economic Growth in the European Union: A Panel Data Analysis," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    8. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Marcus Cardoso & Tálita Santos & Luiza Gagno Azolin Tessarolo & Vicente Aprigliano & Antônio Nélson Rodrigues da Silva & Marcelino Aurélio Vieira da Silva, 2023. "Exploring the Resilience of Public Transport Trips in the Face of Urban Violence from a Gender Perspective," Sustainability, MDPI, vol. 15(24), pages 1-24, December.
    10. Sergey Goolak & Borys Liubarskyi & Ievgen Riabov & Vaidas Lukoševičius & Artūras Keršys & Sigitas Kilikevičius, 2023. "Analysis of the Efficiency of Traction Drive Control Systems of Electric Locomotives with Asynchronous Traction Motors," Energies, MDPI, vol. 16(9), pages 1-30, April.
    11. Khan, Muhammad Imran & Gutiérrez-Alvarez, R. & Asfand, Faisal & Bicer, Yusuf & Sgouridis, Sgouris & Al-Ghamdi, Sami G. & Jouhara, Hussam & Asif, M. & Kurniawan, Tonni Agustiono & Abid, Muhammad & Pesy, 2024. "The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    12. Antonio Chavando & Valter Silva & João Cardoso & Daniela Eusebio, 2024. "Advancements and Challenges of Ammonia as a Sustainable Fuel for the Maritime Industry," Energies, MDPI, vol. 17(13), pages 1-35, June.
    13. Sviatoslav Kryshtopa & Krzysztof Górski & Rafał Longwic & Ruslans Smigins & Liudmyla Kryshtopa, 2021. "Increasing Parameters of Diesel Engines by Their Transformation for Methanol Conversion Products," Energies, MDPI, vol. 14(6), pages 1-19, March.
    14. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    15. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Reza Soltani Motlagh & Seyed Behbood Issa Zadeh & Claudia Lizette Garay-Rondero, 2023. "Towards International Maritime Organization Carbon Targets: A Multi-Criteria Decision-Making Analysis for Sustainable Container Shipping," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    2. Campion, Nicolas & Gutiérrez-Alvarez, Raúl & Bruce, José Tomás Figueroa & Münster, Marie, 2024. "The potential role of concentrated solar power for off-grid green hydrogen and ammonia production," Renewable Energy, Elsevier, vol. 236(C).
    3. Nikolaos Rizopoulos & Roussos Papagiannakis, 2025. "Comparative Evaluation of the Effect of Exhaust Gas Recirculation Usage on the Performance Characteristics and Emissions of a Natural Gas/Diesel Compression-Ignition Engine Operating at Part-Load Cond," Energies, MDPI, vol. 18(3), pages 1-31, February.
    4. Guangying Jin & Wei Feng & Qingpu Meng, 2022. "Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    5. Fredrik von Malmborg, 2024. "Tapping the Conversation on the Meaning of Decarbonization: Discourses and Discursive Agency in EU Politics on Low-Carbon Fuels for Maritime Shipping," Sustainability, MDPI, vol. 16(13), pages 1-36, June.
    6. Marta Wala-Kapica & Aleksander Gąsior & Artur Maciej & Szymon Smykała & Alicja Kazek-Kęsik & Mehdi Baghayeri & Wojciech Simka, 2024. "One-Pot Fast Electrochemical Synthesis of Ternary Ni-Cu-Fe Particles for Improved Urea Oxidation," Energies, MDPI, vol. 17(21), pages 1-17, October.
    7. W. Matekenya & R. Ncwadi, 2022. "The impact of maritime transport financing on total trade in South Africa," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-17, December.
    8. Daniele La Corte & Marina Maddaloni & Reza Vahidzadeh & Marta Domini & Giorgio Bertanza & Samee Ullah Ansari & Matteo Marchionni & Vittorio Tola & Nancy Artioli, 2025. "Recovered Ammonia as a Sustainable Energy Carrier: Innovations in Recovery, Combustion, and Fuel Cells," Energies, MDPI, vol. 18(3), pages 1-46, January.
    9. Duarte Lynce de Faria, 2024. "The EU Emission Trading System Tax Regime and the Issue of Unfair Maritime Competition," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    10. Javier Vaca-Cabrero & Javier Domínguez Rastrojo & Nicoletta González-Cancelas & Alberto Camarero-Orive, 2025. "Enhancing Sustainability in Port Infrastructure Through Innovation: A Case Study of the Spanish Port System," Sustainability, MDPI, vol. 17(6), pages 1-19, March.
    11. Milad Ghorbanzadeh & Mohamad Issa & Adrian Ilinca, 2023. "Experimental Underperformance Detection of a Fixed-Speed Diesel–Electric Generator Based on Exhaust Gas Emissions," Energies, MDPI, vol. 16(8), pages 1-15, April.
    12. Rida Waheed, 2023. "Energy Challenges, Green Growth, Blue Indicators, and Sustainable Economic Growth: A Study of Saudi Arabia," Evaluation Review, , vol. 47(6), pages 983-1024, December.
    13. Chunchao Wu & Yonghong Zhao & Wulin Li & Jianjun Fan & Haixiang Xu & Dingkun Yuan & Zhongqian Ling, 2024. "Layered Operation Optimization Methods for Concentrated Solar Power (CSP) Technology and Multi-Energy Flow Coupling Systems," Energies, MDPI, vol. 17(24), pages 1-19, December.
    14. Excel Theophilus Ukpohor & Yetunde Adenike Adebayo & Ikiomoworio Nicholas Dienagha, 2025. "Innovative Optimization in LNG Production: Enhancing Efficiency and Sustainability with Advanced Technology," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 9(1), pages 1116-1125, January.
    15. Sarwar, Suleman, 2022. "Impact of energy intensity, green economy and blue economy to achieve sustainable economic growth in GCC countries: Does Saudi Vision 2030 matters to GCC countries," Renewable Energy, Elsevier, vol. 191(C), pages 30-46.
    16. Suleman Sarwar & Rida Waheed & Ghazala Aziz & Simona Andreea Apostu, 2022. "The Nexus of Energy, Green Economy, Blue Economy, and Carbon Neutrality Targets," Energies, MDPI, vol. 15(18), pages 1-19, September.
    17. Ewelina Orysiak & Hubert Zielski & Mateusz Gawle, 2024. "LNG Logistics Model to Meet Demand for Bunker Fuel," Energies, MDPI, vol. 17(7), pages 1-22, April.
    18. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    19. Evanthia Kostidi & Dimitrios Lyridis, 2025. "Customizable Life Cycle Cost Methodology for Ammonia Fuel Storage: Enhancing Adoptability Across Diverse Onboard Arrangements," Energies, MDPI, vol. 18(5), pages 1-18, March.
    20. Sviatoslav Kryshtopa & Krzysztof Górski & Rafał Longwic & Ruslans Smigins & Liudmyla Kryshtopa & Jonas Matijošius, 2022. "Using Hydrogen Reactors to Improve the Diesel Engine Performance," Energies, MDPI, vol. 15(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:2141-:d:1603498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.