IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3024-d798274.html
   My bibliography  Save this article

Using Hydrogen Reactors to Improve the Diesel Engine Performance

Author

Listed:
  • Sviatoslav Kryshtopa

    (Department of Automobile Transport, Ivano-Frankivsk National Technical University of Oil and Gas, 76019 Ivano-Frankivsk, Ukraine)

  • Krzysztof Górski

    (Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Chrobrego 45, 26-200 Radom, Poland)

  • Rafał Longwic

    (Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland)

  • Ruslans Smigins

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, J. Cakstes blvd 5, LV3001 Jelgava, Latvia)

  • Liudmyla Kryshtopa

    (Department of Automobile Transport, Ivano-Frankivsk National Technical University of Oil and Gas, 76019 Ivano-Frankivsk, Ukraine)

  • Jonas Matijošius

    (Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
    Department of Automobile Transport Engineering, Technical Faculty, Vilnius College of Technologies and Design, Olandu Str. 16, LT-01100 Vilnius, Lithuania)

Abstract

This work is aimed at solving the problem of converting diesel power drives to diesel–hydrogen fuels, which are more environmentally friendly and less expensive alternatives to diesel fuel. The method of increasing the energy efficiency of diesel fuels has been improved. The thermochemical essence of using methanol as an alternative fuel to increase energy efficiency based on the provisions of thermotechnics is considered. Alternative methanol fuel has been chosen as the initial product for the hydrogen conversion process, and its energy value, cost, and temperature conditions have been taken into account. Calculations showed that the caloric effect from the combustion of the converted mixture of hydrogen H 2 and carbon monoxide CO exceeds the effect from the combustion of the same amount of methanol fuel. Engine power and fuel energy were increased due to the thermochemical regeneration of engine exhaust gas heat. An experimental setup was created to study the operation of a converted diesel engine on diesel–hydrogen products. Experimental studies of power and environmental parameters of a diesel engine converted for diesel–hydrogen products were performed. The studies showed that the conversion of diesel engines to operate using diesel–hydrogen products is technically feasible. A reduction in energy consumption was accompanied by an improvement in the environmental performance of the diesel–hydrogen engine working together with a chemical methanol conversion thermoreactor. The formation of carbon monoxide occurred in the range of 52–62%; nitrogen oxides in the exhaust gases decreased by 53–60% according to the crankshaft speed and loading on the experimental engine. In addition, soot emissions were reduced by 17% for the engine fueled with the diesel–hydrogen fuel. The conversion of diesel engines for diesel–hydrogen products is very profitable because the price of methanol is, on average, 10–20% of the cost of petroleum fuel.

Suggested Citation

  • Sviatoslav Kryshtopa & Krzysztof Górski & Rafał Longwic & Ruslans Smigins & Liudmyla Kryshtopa & Jonas Matijošius, 2022. "Using Hydrogen Reactors to Improve the Diesel Engine Performance," Energies, MDPI, vol. 15(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3024-:d:798274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    2. Krzysztof Górski & Ruslans Smigins & Rafał Longwic, 2020. "Research on Physico-Chemical Properties of Diethyl Ether/Linseed Oil Blends for the Use as Fuel in Diesel Engines," Energies, MDPI, vol. 13(24), pages 1-16, December.
    3. Li, Yaopeng & Jia, Ming & Liu, Yaodong & Xie, Maozhao, 2013. "Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine," Applied Energy, Elsevier, vol. 106(C), pages 184-197.
    4. Sviatoslav Kryshtopa & Krzysztof Górski & Rafał Longwic & Ruslans Smigins & Liudmyla Kryshtopa, 2021. "Increasing Parameters of Diesel Engines by Their Transformation for Methanol Conversion Products," Energies, MDPI, vol. 14(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Alfredas Rimkus & Rafał Longwic, 2022. "Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions," Energies, MDPI, vol. 15(11), pages 1-18, June.
    2. Sławomir Wierzbicki & Kamil Duda & Maciej Mikulski, 2021. "Renewable Fuels for Internal Combustion Engines," Energies, MDPI, vol. 14(22), pages 1-3, November.
    3. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
    5. Dongzhi Gao & Mubasher Ikram & Chao Geng & Yangyi Wu & Xiaodan Li & Chao Jin & Zunqing Zheng & Mengliang Li & Haifeng Liu, 2023. "Effects of Anhydrous and Hydrous Fusel Oil on Combustion and Emissions on a Heavy-Duty Compression-Ignition Engine," Energies, MDPI, vol. 16(17), pages 1-14, August.
    6. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    8. Krzysztof Górski & Ruslans Smigins & Jonas Matijošius & Dimitrios Tziourtzioumis, 2023. "Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends," Energies, MDPI, vol. 16(2), pages 1-17, January.
    9. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    10. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    11. Chen, Lin & Wei, Haiqiao & Chen, Ceyuan & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2019. "Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine," Energy, Elsevier, vol. 166(C), pages 318-325.
    12. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    13. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    14. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    16. Joaquim Costa & Jorge Martins & Tiago Arantes & Margarida Gonçalves & Luis Durão & Francisco P. Brito, 2021. "Experimental Assessment of the Performance and Emissions of a Spark-Ignition Engine Using Waste-Derived Biofuels as Additives," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).
    18. Pan, Jiaying & Wei, Haiqiao & Shu, Gequn & Pan, Mingzhang & Feng, Dengquan & Li, Nan, 2017. "LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine," Applied Energy, Elsevier, vol. 191(C), pages 183-192.
    19. Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
    20. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3024-:d:798274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.