IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1696-d1593813.html
   My bibliography  Save this article

Machine Learning-Based Framework to Predict the Combined Effects of Climate Change and Floating Photovoltaic Systems Installation on Water Quality of Open-Water Lakes

Author

Listed:
  • Nagavinothini Ravichandran

    (Center of Excellence in Interdisciplinary Research for Sustainable Development, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

  • Balamurugan Paneerselvam

    (Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, India)

Abstract

Floating photovoltaic (FPV) systems represent a promising advancement in renewable energy technology; however, a comprehensive understanding of their environmental impacts is essential. The effects of FPV installation on lake water temperature remain unclear, potentially hindering the development of the technology due to associated negative implications for aquatic ecosystems. Furthermore, the rise in water temperature associated with climate change poses additional threats to open-water bodies. In this context, the current study endeavors to develop a machine learning (ML)-based framework to assess the combined impact of climate change and the installation of FPV systems on the water quality of open-water lakes. This framework involves the creation of three predictive models and a forecasting model utilizing various ML algorithms, concentrating on temperature and water quality predictions. The framework was applied to a case study assessing the impact of installing three distinct FPV systems on the water quality of Oostvoornse Lake in the Netherlands, employing water quality data available in the literature. The findings indicate a temporal increase in both air and water temperatures at the site, underscoring the ramifications of climate change. Additionally, the results suggest that FPV installations can influence lake thermal dynamics, leading to variations in water temperature and dissolved oxygen concentration, which presents both opportunities and challenges in addressing the impacts of climate change. The proposed framework will be an effective tool for evaluating the effects of FPV systems on water quality throughout their operational lifespan while addressing significant climate change issues.

Suggested Citation

  • Nagavinothini Ravichandran & Balamurugan Paneerselvam, 2025. "Machine Learning-Based Framework to Predict the Combined Effects of Climate Change and Floating Photovoltaic Systems Installation on Water Quality of Open-Water Lakes," Sustainability, MDPI, vol. 17(4), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1696-:d:1593813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1696/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1696/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Rui L. Pedroso de Lima & Katerina Paxinou & Floris C. Boogaard & Olof Akkerman & Fen-Yu Lin, 2021. "In-Situ Water Quality Observations under a Large-Scale Floating Solar Farm Using Sensors and Underwater Drones," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    3. Cromratie Clemons, Sáde K. & Salloum, Coleman R. & Herdegen, Kyle G. & Kamens, Richard M. & Gheewala, Shabbir H., 2021. "Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand," Renewable Energy, Elsevier, vol. 168(C), pages 448-462.
    4. R. Iestyn Woolway & Gesa A. Weyhenmeyer & Martin Schmid & Martin T. Dokulil & Elvira Eyto & Stephen C. Maberly & Linda May & Christopher J. Merchant, 2019. "Substantial increase in minimum lake surface temperatures under climate change," Climatic Change, Springer, vol. 155(1), pages 81-94, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowsar, Abu & Hassan, Mahedi & Rana, Md Tasnim & Haque, Nawshad & Faruque, Md Hasan & Ahsan, Saifuddin & Alam, Firoz, 2023. "Optimization and techno-economic assessment of 50 MW floating solar power plant on Hakaluki marsh land in Bangladesh," Renewable Energy, Elsevier, vol. 216(C).
    2. Larissa de Andrade Goncalves & Larissa Faria & Michael Mannich & Marcelo Coelho & Jucimara Andreza Rigotti & Tobias Bleninger & Jean Ricardo Simoes Vitule, 2025. "A Systematic Review of Floating Photovoltaic Plant Environmental Impacts," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 18(1), pages 1-94, January.
    3. Nobre, Regina & Boulêtreau, Stéphanie & Colas, Fanny & Azemar, Frederic & Tudesque, Loïc & Parthuisot, Nathalie & Favriou, Pierre & Cucherousset, Julien, 2023. "Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ji, Qianfeng & Li, Kefeng & Wang, Yuanming & Feng, Jingjie & Li, Ran & Liang, Ruifeng, 2022. "Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits, a case on Xiangjiaba Reservoir with hydropower station," Renewable Energy, Elsevier, vol. 195(C), pages 946-956.
    7. Haspolat, Emre & Cicek, Doga Derman & Gokmener, Serkan & Melek, Abiddin Berhan & Deveci, Muhammet & Oguz, Elif, 2024. "Site selection of floating photovoltaic systems on hydropower reservoirs using fuzzy sine trigonometric decision-making model: Turkey as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    8. Héctor Fernández Rodríguez & Miguel Ángel Pardo, 2023. "A Study of the Relevant Parameters for Converting Water Supply to Small Towns in the Province of Alicante to Systems Powered by Photovoltaic Solar Panels," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    9. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    10. Seán Kelly & Tadhg N. Moore & Elvira Eyto & Mary Dillane & Chloé Goulon & Jean Guillard & Emilien Lasne & Phil McGinnity & Russell Poole & Ian J. Winfield & R. Iestyn Woolway & Eleanor Jennings, 2020. "Warming winters threaten peripheral Arctic charr populations of Europe," Climatic Change, Springer, vol. 163(1), pages 599-618, November.
    11. Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Guven, Denizhan, 2025. "Assessing the environmental and economic viability of floating PV-powered green hydrogen: A case study on inland ferry operations in Türkiye," Applied Energy, Elsevier, vol. 377(PD).
    13. Jun Wang & Peter D. Lund, 2022. "Review of Recent Offshore Photovoltaics Development," Energies, MDPI, vol. 15(20), pages 1-14, October.
    14. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    15. Micheli, Leonardo & Talavera, Diego L., 2023. "Economic feasibility of floating photovoltaic power plants: Profitability and competitiveness," Renewable Energy, Elsevier, vol. 211(C), pages 607-616.
    16. Piancó, Felipe & Moraes, Leo & Prazeres, Igor dos & Lima, Antônio Guilherme Garcia & Bessa, João Gabriel & Micheli, Leonardo & Fernández, Eduardo & Almonacid, Florencia, 2022. "Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study," Renewable Energy, Elsevier, vol. 201(P1), pages 85-95.
    17. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    18. R. Iestyn Woolway & Yan Tong & Lian Feng & Gang Zhao & Dieu Anh Dinh & Haoran Shi & Yunlin Zhang & Kun Shi, 2024. "Multivariate extremes in lakes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Mohamad Al-Widyan & Mohammad Khasawneh & Muna Abu-Dalo, 2021. "Potential of Floating Photovoltaic Technology and Their Effects on Energy Output, Water Quality and Supply in Jordan," Energies, MDPI, vol. 14(24), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1696-:d:1593813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.