IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124001862.html
   My bibliography  Save this article

Potential environmental impacts of floating solar photovoltaic systems

Author

Listed:
  • Benjamins, Steven
  • Williamson, Benjamin
  • Billing, Suzannah-Lynn
  • Yuan, Zhiming
  • Collu, Maurizio
  • Fox, Clive
  • Hobbs, Laura
  • Masden, Elizabeth A.
  • Cottier-Cook, Elizabeth J.
  • Wilson, Ben

Abstract

The use of floating photovoltaic systems in freshwater and marine environments is forecast to increase dramatically worldwide within the next decade in response to demands for accelerated decarbonisation of the global economy whilst avoiding competition for land, particularly near population centres. The potential environmental impacts of this expanding, novel technology are gradually becoming apparent and warrant consideration. This study reviews and evaluates the various potential environmental impacts of introducing floating photovoltaic arrays into aquatic (freshwater and marine) ecosystems based on the current state of floating photovoltaic technology and known impacts of similar industries. Environmental impacts of floating photovoltaic systems fall into several categories including shading, impacts on hydrodynamics and water-atmosphere exchange, energy emissions, impacts on benthic communities, and impacts on mobile species. The social acceptability of floating photovoltaic systems and the ability for long-term coexistence with other activities and interests are also discussed. Floating photovoltaic systems have an important role to play in global decarbonisation, but close collaboration between stakeholders will be required to better understand potential environmental and social impacts of this new technology. Development and validation of appropriate monitoring methods at scale, and consideration of long-term, equitable solutions to identified impacts, is important to enable sustainable expansion of this industry.

Suggested Citation

  • Benjamins, Steven & Williamson, Benjamin & Billing, Suzannah-Lynn & Yuan, Zhiming & Collu, Maurizio & Fox, Clive & Hobbs, Laura & Masden, Elizabeth A. & Cottier-Cook, Elizabeth J. & Wilson, Ben, 2024. "Potential environmental impacts of floating solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124001862
    DOI: 10.1016/j.rser.2024.114463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun-Hee Kim & Soon-Jong Yoon & Wonchang Choi, 2017. "Design and Construction of 1 MW Class Floating PV Generation Structural System Using FRP Members," Energies, MDPI, vol. 10(8), pages 1-14, August.
    2. Qasem Abdelal, 2021. "Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 732-739.
    3. Cazzaniga, R. & Cicu, M. & Rosa-Clot, M. & Rosa-Clot, P. & Tina, G.M. & Ventura, C., 2018. "Floating photovoltaic plants: Performance analysis and design solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1730-1741.
    4. Rafael M. Almeida & Rafael Schmitt & Steven M. Grodsky & Alexander S. Flecker & Carla P. Gomes & Lu Zhao & Haohui Liu & Nathan Barros & Rafael Kelman & Peter B. McIntyre, 2022. "Floating solar power could help fight climate change — let’s get it right," Nature, Nature, vol. 606(7913), pages 246-249, June.
    5. Sika Gadzanku & Heather Mirletz & Nathan Lee & Jennifer Daw & Adam Warren, 2021. "Benefits and Critical Knowledge Gaps in Determining the Role of Floating Photovoltaics in the Energy-Water-Food Nexus," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    6. Rentschler, Manuel U.T. & Adam, Frank & Chainho, Paulo, 2019. "Design optimization of dynamic inter-array cable systems for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 622-635.
    7. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    8. Thi Thu Em Vo & Hyeyoung Ko & Junho Huh & Namje Park, 2021. "Overview of Possibilities of Solar Floating Photovoltaic Systems in the OffShore Industry," Energies, MDPI, vol. 14(21), pages 1-30, October.
    9. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    10. Yubin Jin & Shijie Hu & Alan D. Ziegler & Luke Gibson & J. Elliott Campbell & Rongrong Xu & Deliang Chen & Kai Zhu & Yan Zheng & Bin Ye & Fan Ye & Zhenzhong Zeng, 2023. "Energy production and water savings from floating solar photovoltaics on global reservoirs," Nature Sustainability, Nature, vol. 6(7), pages 865-874, July.
    11. Taormina, Bastien & Bald, Juan & Want, Andrew & Thouzeau, Gérard & Lejart, Morgane & Desroy, Nicolas & Carlier, Antoine, 2018. "A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 380-391.
    12. Moraes, Camile A. & Valadão, Giovana F. & Renato, Natalia S. & Botelho, Daniel F. & Oliveira, Augusto C. L. de & Aleman, Catariny C. & Cunha, Fernando F., 2022. "Floating photovoltaic plants as an electricity supply option in the Tocantins-Araguaia basin," Renewable Energy, Elsevier, vol. 193(C), pages 264-277.
    13. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    14. Luisetti, Tiziana & Turner, R. Kerry & Andrews, Julian E. & Jickells, Timothy D. & Kröger, Silke & Diesing, Markus & Paltriguera, Lucille & Johnson, Martin T. & Parker, Eleanor R. & Bakker, Dorothee C, 2019. "Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK," Ecosystem Services, Elsevier, vol. 35(C), pages 67-76.
    15. Visser, Elke & Perold, Vonica & Ralston-Paton, Samantha & Cardenal, Alvaro C. & Ryan, Peter G., 2019. "Assessing the impacts of a utility-scale photovoltaic solar energy facility on birds in the Northern Cape, South Africa," Renewable Energy, Elsevier, vol. 133(C), pages 1285-1294.
    16. Durakovic, Goran & del Granado, Pedro Crespo & Tomasgard, Asgeir, 2023. "Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices," Energy, Elsevier, vol. 263(PA).
    17. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    18. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    19. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    20. Stephanie A. Henson & B. B. Cael & Stephanie R. Allen & Stephanie Dutkiewicz, 2021. "Future phytoplankton diversity in a changing climate," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    21. Agarwal, Atul & Venugopal, Vengatesan & Harrison, Gareth P., 2013. "The assessment of extreme wave analysis methods applied to potential marine energy sites using numerical model data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 244-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Imamul Islam & Mohd Shawal Jadin & Ahmed Al Mansur & Nor Azwan Mohamed Kamari & Taskin Jamal & Molla Shahadat Hossain Lipu & Mohd Nurulakla Mohd Azlan & Mahidur R. Sarker & A. S. M. Shihavuddin, 2023. "Techno-Economic and Carbon Emission Assessment of a Large-Scale Floating Solar PV System for Sustainable Energy Generation in Support of Malaysia’s Renewable Energy Roadmap," Energies, MDPI, vol. 16(10), pages 1-32, May.
    2. Claus, R. & López, M., 2022. "Key issues in the design of floating photovoltaic structures for the marine environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. C.J., Ramanan & Lim, King Hann & Kurnia, Jundika Candra & Roy, Sukanta & Bora, Bhaskor Jyoti & Medhi, Bhaskar Jyoti, 2024. "Towards sustainable power generation: Recent advancements in floating photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    5. Evgeny Solomin & Evgeny Sirotkin & Erdem Cuce & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy, 2021. "Hybrid Floating Solar Plant Designs: A Review," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Laura Essak & Aritra Ghosh, 2022. "Floating Photovoltaics: A Review," Clean Technol., MDPI, vol. 4(3), pages 1-18, August.
    7. Baxter, Jamie & Morzaria, Rakhee & Hirsch, Rachel, 2013. "A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict," Energy Policy, Elsevier, vol. 61(C), pages 931-943.
    8. Cousse, Julia, 2021. "Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Pepermans, Yves & Loots, Ilse, 2013. "Wind farm struggles in Flanders fields: A sociological perspective," Energy Policy, Elsevier, vol. 59(C), pages 321-328.
    10. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    12. Brannstrom, Christian & Gorayeb, Adryane & de Sousa Mendes, Jocicléa & Loureiro, Caroline & Meireles, Antonio Jeovah de Andrade & Silva, Edson Vicente da & Freitas, Ana Larissa Ribeiro de & Oliveira, , 2017. "Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 62-71.
    13. Vuichard, Pascal & Stauch, Alexander & Wüstenhagen, Rolf, 2021. "Keep it local and low-key: Social acceptance of alpine solar power projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    15. Schneider, Nina & Rinscheid, Adrian, 2024. "The (de-)construction of technology legitimacy: Contending storylines surrounding wind energy in Austria and Switzerland," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    16. Bayulgen, Oksan & Atkinson-Palombo, Carol & Buchanan, Mary & Scruggs, Lyle, 2021. "Tilting at windmills? Electoral repercussions of wind turbine projects in Minnesota," Energy Policy, Elsevier, vol. 159(C).
    17. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Feurtey, Évariste & Ilinca, Adrian & Sakout, Anas & Saucier, Carol, 2016. "Institutional factors influencing strategic decision-making in energy policy; a case study of wind energy in France and Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1455-1470.
    19. Bergek, Anna, 2010. "Levelling the playing field? The influence of national wind power planning instruments on conflicts of interests in a Swedish county," Energy Policy, Elsevier, vol. 38(5), pages 2357-2369, May.
    20. Aitken, Mhairi, 2010. "Why we still don't understand the social aspects of wind power: A critique of key assumptions within the literature," Energy Policy, Elsevier, vol. 38(4), pages 1834-1841, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124001862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.