IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i1d10.1007_s10584-020-02887-z.html
   My bibliography  Save this article

Warming winters threaten peripheral Arctic charr populations of Europe

Author

Listed:
  • Seán Kelly

    (Dundalk Institute of Technology)

  • Tadhg N. Moore

    (Dundalk Institute of Technology)

  • Elvira Eyto

    (Marine Institute)

  • Mary Dillane

    (Marine Institute)

  • Chloé Goulon

    (University of Savoie Mont Blanc, INRAE, CARRTEL)

  • Jean Guillard

    (University of Savoie Mont Blanc, INRAE, CARRTEL)

  • Emilien Lasne

    (ESE, Ecology and Ecosystem Health, Agrocampus-Ouest, INRAE)

  • Phil McGinnity

    (Marine Institute
    University College Cork)

  • Russell Poole

    (Marine Institute)

  • Ian J. Winfield

    (Lancaster Environment Centre)

  • R. Iestyn Woolway

    (ECSAT)

  • Eleanor Jennings

    (Dundalk Institute of Technology)

Abstract

As the global climate warms, the fate of lacustrine fish is of huge concern, especially given their sensitivity as ectotherms to changes in water temperature. The Arctic charr (Salvelinus alpinus L.) is a salmonid with a Holarctic distribution, with peripheral populations persisting at temperate latitudes, where it is found only in sufficiently cold, deep lakes. Thus, warmer temperatures in these habitats particularly during early life stages could have catastrophic consequences on population dynamics. Here, we combined lake temperature observations, a 1-D hydrodynamic model, and a multi-decadal climate reanalysis to show coherence in warming winter water temperatures in four European charr lakes near the southernmost limit of the species’ distribution. Current maximum and mean winter temperatures are on average ~ 1 °C warmer compared to early the 1980s, and temperatures of 8.5 °C, adverse for high charr egg survival, have frequently been exceeded in recent winters. Simulations of winter lake temperatures toward century-end showed that these warming trends will continue, with further increases of 3–4 °C projected. An additional 324 total accumulated degree-days during winter is projected on average across lakes, which could impair egg quality and viability. We suggest that the perpetuating winter warming trends shown here will imperil the future status of these lakes as charr refugia and generally do not augur well for the fate of coldwater-adapted lake fish in a warming climate.

Suggested Citation

  • Seán Kelly & Tadhg N. Moore & Elvira Eyto & Mary Dillane & Chloé Goulon & Jean Guillard & Emilien Lasne & Phil McGinnity & Russell Poole & Ian J. Winfield & R. Iestyn Woolway & Eleanor Jennings, 2020. "Warming winters threaten peripheral Arctic charr populations of Europe," Climatic Change, Springer, vol. 163(1), pages 599-618, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02887-z
    DOI: 10.1007/s10584-020-02887-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02887-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02887-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Troy M. Farmer & Elizabeth A. Marschall & Konrad Dabrowski & Stuart A. Ludsin, 2015. "Short winters threaten temperate fish populations," Nature Communications, Nature, vol. 6(1), pages 1-10, November.
    2. Tomas Jonsson & Malin Setzer, 2015. "A freshwater predator hit twice by the effects of warming across trophic levels," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    3. R. Iestyn Woolway & Gesa A. Weyhenmeyer & Martin Schmid & Martin T. Dokulil & Elvira Eyto & Stephen C. Maberly & Linda May & Christopher J. Merchant, 2019. "Substantial increase in minimum lake surface temperatures under climate change," Climatic Change, Springer, vol. 155(1), pages 81-94, July.
    4. Gabriel Yvon-Durocher & Chris J. Hulatt & Guy Woodward & Mark Trimmer, 2017. "Long-term warming amplifies shifts in the carbon cycle of experimental ponds," Nature Climate Change, Nature, vol. 7(3), pages 209-213, March.
    5. Daniel E. Schindler & Ray Hilborn & Brandon Chasco & Christopher P. Boatright & Thomas P. Quinn & Lauren A. Rogers & Michael S. Webster, 2010. "Population diversity and the portfolio effect in an exploited species," Nature, Nature, vol. 465(7298), pages 609-612, June.
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Changeux & Philippe Boisneau & Nicolas Stolzenberg & Chloé Goulon, 2024. "A long term overview of freshwater fisheries in France," Post-Print hal-04244953, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    3. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    4. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    5. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    6. Gong, Ziqian & Baker, Justin S. & Wade, Christopher M. & Havlík, Petr, 2024. "Irrigation intensification in U.S. agriculture under climate change – an adaptation mechanism or trade-induced response?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343581, Agricultural and Applied Economics Association.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    10. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    11. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    13. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    14. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    17. Hemen Mark Butu & Yongwon Seo & Jeung Soo Huh, 2020. "Determining Extremes for Future Precipitation in South Korea Based on RCP Scenarios Using Non-Parametric SPI," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
    18. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    19. Habtemariam, Lemlem Teklegiorgis & Abate Kassa, Getachew & Gandorfer, Markus, 2017. "Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects," Agricultural Systems, Elsevier, vol. 152(C), pages 58-66.
    20. Allen-Dumas, Melissa R. & Rose, Amy N. & New, Joshua R. & Omitaomu, Olufemi A. & Yuan, Jiangye & Branstetter, Marcia L. & Sylvester, Linda M. & Seals, Matthew B. & Carvalhaes, Thomaz M. & Adams, Mark , 2020. "Impacts of the morphology of new neighborhoods on microclimate and building energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:1:d:10.1007_s10584-020-02887-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.