IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p236-d1557873.html
   My bibliography  Save this article

Optimised Sizing and Control of Non-Invasive Retrofit Options for More Sustainable Heat and Power Supply to Multi-Storey Apartment Buildings

Author

Listed:
  • Jevgenijs Kozadajevs

    (Institute of Industrial Electronics, Electrical Engineering and Energy, Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Ivars Zalitis

    (Institute of Industrial Electronics, Electrical Engineering and Energy, Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Anna Mutule

    (Institute of Industrial Electronics, Electrical Engineering and Energy, Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

  • Lubova Petrichenko

    (Institute of Industrial Electronics, Electrical Engineering and Energy, Faculty of Computer Science, Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

Considering the ambitious climate goals defined by the European Union, the significant share of energy demand represented by buildings, the slow process of their renovation due to challenges such as a need for majority consent from residents and limited available space in dense urban areas, this study aims to foster retrofitting of energy supply systems of multi-storey apartment buildings, improving their sustainability. This entails making the transition to sustainable energy systems more socially acceptable and practical in urban contexts by proposition and demonstration of the potential of a power and heat supply system retrofit that minimises disruptions felt by residents. It integrates rooftop renewable power sources, heat storage with an electric heater, heat pumps, and existing connections to public utility networks. Furthermore, simulation results of both single- and multi-objective optimisation (performed by the genetic algorithm) for equipment selection, as well as conventional and smart control (implemented as a gradient-based optimisation) for daily scheduling, are compared, defining the main scientific contribution of the study. It is found possible to achieve a net present value of up to almost twice the annual energy expenses of the unrenovated building or self-sufficiency rate of up to 41.6% while using conventional control. These benefits can reach 2.6 times or 49.8% if the smart control is applied, demonstrating both the profitability and improved self-sufficiency achievable with the proposed approach in Latvian conditions.

Suggested Citation

  • Jevgenijs Kozadajevs & Ivars Zalitis & Anna Mutule & Lubova Petrichenko, 2024. "Optimised Sizing and Control of Non-Invasive Retrofit Options for More Sustainable Heat and Power Supply to Multi-Storey Apartment Buildings," Sustainability, MDPI, vol. 17(1), pages 1-35, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:236-:d:1557873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amina Irakoze & Han-Sung Choi & Kee-Han Kim, 2024. "Doing More with Less: Applying Low-Frequency Energy Data to Define Thermal Performance of House Units and Energy-Saving Opportunities," Energies, MDPI, vol. 17(16), pages 1-16, August.
    2. Suzi Dilara Mangan, 2023. "A Performance-Based Decision Support Workflow for Retrofitting Residential Buildings," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    3. Laila Zemite & Jevgenijs Kozadajevs & Leo Jansons & Ilmars Bode & Egils Dzelzitis & Karina Palkova, 2024. "Integrating Renewable Energy Solutions in Small-Scale Industrial Facilities," Energies, MDPI, vol. 17(11), pages 1-19, June.
    4. Xi, Yan-Ao-Ming & Li, Yun-Ze & Chen, Ya-Hui & Jiang, Hai-Hao & Huang, Zhao-Bin, 2024. "Energy demand and carbon emission analyses of a solar-driven domestic regional environment mobile robot as household auxiliary heating and cooling method," Applied Energy, Elsevier, vol. 371(C).
    5. Vallati, Andrea & Di Matteo, Miriam & Sundararajan, Mukund & Muzi, Francesco & Fiorini, Costanza Vittoria, 2024. "Development and optimization of an energy saving strategy for social housing applications by water source-heat pump integrating photovoltaic-thermal panels," Energy, Elsevier, vol. 301(C).
    6. Huang, Z.F. & Chen, W.D. & Wan, Y.D. & Shao, Y.L. & Islam, M.R. & Chua, K.J., 2024. "Techno-economic comparison of different energy storage configurations for renewable energy combined cooling heating and power system," Applied Energy, Elsevier, vol. 356(C).
    7. Marta Laska & Katarzyna Reclik, 2024. "Analysis of Internal Conditions and Energy Consumption during Winter in an Apartment Located in a Tenement Building in Poland," Sustainability, MDPI, vol. 16(10), pages 1-21, May.
    8. Acharjee, Ashis & Chakraborti, Prasun, 2024. "Study and development of a logical model for an ORC based district heating renewable energy system considering discrete analysis," Energy, Elsevier, vol. 298(C).
    9. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    10. Luis Coelho & Maria K. Koukou & John Konstantaras & Michail Gr. Vrachopoulos & Amandio Rebola & Anastasia Benou & Constantine Karytsas & Pavlos Tourou & Constantinos Sourkounis & Heiko Gaich & Johan G, 2024. "Assessing the Effectiveness of an Innovative Thermal Energy Storage System Installed in a Building in a Moderate Continental Climatic Zone," Energies, MDPI, vol. 17(3), pages 1-19, February.
    11. Aunedi, Marko & Olympios, Andreas V. & Pantaleo, Antonio M. & Markides, Christos N. & Strbac, Goran, 2023. "System-driven design and integration of low-carbon domestic heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    2. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    3. Jie Xing & Peng Wu, 2021. "Optimal Planning of Electricity-Natural Gas Coupling System Considering Power to Gas Facilities," Energies, MDPI, vol. 14(12), pages 1-19, June.
    4. Wang, Yongzhen & Zhang, Lanlan & Song, Yi & Han, Kai & Zhang, Yan & Zhu, Yilin & Kang, Ligai, 2024. "State-of-the-art review on evaluation indicators of integrated intelligent energy from different perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    6. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    7. Wener, Natalia & Martinez-Boggio, Santiago & Favre, Federico & Curto-Risso, Pedro, 2024. "Zero-dimensional model of a pumped heat energy storage system with reciprocating machines," Applied Energy, Elsevier, vol. 372(C).
    8. Ren, Xiaoxiao & Han, Zijun & Ma, Jinpeng & Xue, Kai & Chong, Daotong & Wang, Jinshi & Yan, Junjie, 2024. "Life-cycle-based multi-objective optimal design and analysis of distributed multi-energy systems for data centers," Energy, Elsevier, vol. 288(C).
    9. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    10. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Chen, Shuhang & Liu, Dongli & Li, Sizhuo & Gan, Zhihua & Qiu, Min, 2022. "Multi-objective thermo-economic optimization of Collins cycle," Energy, Elsevier, vol. 239(PD).
    12. Song, Meng & Ding, Jianyong & Gao, Ciwei & Yan, Mingyu & Ban, Mingfei & Liu, Zicheng & Bai, Wenchao, 2024. "Exergy-driven optimal operation of virtual energy station based on coordinated cooperative and Stackelberg games," Applied Energy, Elsevier, vol. 360(C).
    13. Wang, Yongli & Huang, Feifei & Tao, Siyi & Ma, Yang & Ma, Yuze & Liu, Lin & Dong, Fugui, 2022. "Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy," Applied Energy, Elsevier, vol. 306(PB).
    14. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    15. Zhao, Yuehao & Li, Zhiyi & Ju, Ping & Zhou, Yue, 2023. "Two-stage data-driven dispatch for integrated power and natural gas systems by using stochastic model predictive control," Applied Energy, Elsevier, vol. 343(C).
    16. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    17. Lyu, Jiawei & Zhang, Shenxi & Cheng, Haozhong & Yuan, Kai & Song, Yi, 2022. "A graph theory-based optimal configuration method of energy hub considering the integration of electric vehicles," Energy, Elsevier, vol. 243(C).
    18. Jing, Rui & Lin, Yufeng & Khanna, Nina & Chen, Xiang & Wang, Meng & Liu, Jiahui & Lin, Jianyi, 2021. "Balancing the Energy Trilemma in energy system planning of coastal cities," Applied Energy, Elsevier, vol. 283(C).
    19. Wang, Yongli & Qi, Chengyuan & Dong, Huanran & Wang, Shuo & Wang, Xiaohai & Zeng, Ming & Zhu, Jinrong, 2020. "Optimal design of integrated energy system considering different battery operation strategy," Energy, Elsevier, vol. 212(C).
    20. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:236-:d:1557873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.