IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224030913.html
   My bibliography  Save this article

Enhancing efficiency and economy of hydrogen-based integrated energy system: A green dispatch approach based on exergy analysis

Author

Listed:
  • Li, Zhiwei
  • Zhao, Yuze
  • Wu, Pei
  • Zhang, Hao
  • Dong, Nayang
  • Chang, Yuanyuan
  • Du, Yudong

Abstract

Hydrogen-based integrated energy system holds promise for leveraging the low carbon advantage of hydrogen, but inefficiency of electrolysis hydrogen production leads to significant exergy loss within its operation. Addressing this, this paper focuses on the energy-saving and economic operation of the hydrogen-based integrated energy system, proposes a novel green dispatch approach using loss cost as the objective function and establishes a refined loss cost accounting model based on exergy analysis theory. Firstly, derived from the analogy of exergy loss, the concept and accounting framework of system loss cost are proposed. Secondly, employing exergy analysis and consistent unit exergy cost principle, equipment operation loss cost is calculated through energy, exergy flows analysis and cost allocation. Thirdly, utilizing the total of equipment operation loss cost, wind curtailment penalty cost, and transmission line loss cost as the objective function, a green dispatch model is formulated to minimize overall loss cost while ensuring energy balance and other constraints. Finally, simulations analysis are conducted. The results show that compared to economic dispatch, minimized exergy loss dispatch and multi-objective dispatch methods, proposed approach increases exergy efficiency by 0.54 %, reduces cost by 6.13 % and increases the scale of hydrogen utilization by 3.45 %, respectively.

Suggested Citation

  • Li, Zhiwei & Zhao, Yuze & Wu, Pei & Zhang, Hao & Dong, Nayang & Chang, Yuanyuan & Du, Yudong, 2024. "Enhancing efficiency and economy of hydrogen-based integrated energy system: A green dispatch approach based on exergy analysis," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030913
    DOI: 10.1016/j.energy.2024.133315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030913
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sangi, Roozbeh & Müller, Dirk, 2019. "Application of the second law of thermodynamics to control: A review," Energy, Elsevier, vol. 174(C), pages 938-953.
    2. Wang, Xuan & Wang, Shouxiang & Zhao, Qianyu & Lin, Zhuoran, 2023. "Low-carbon coordinated operation of electric-heat-gas-hydrogen interconnected system and benchmark design considering multi-energy spatial and dynamic coupling," Energy, Elsevier, vol. 279(C).
    3. Fang, Xiaolun & Wang, Yubin & Dong, Wei & Yang, Qiang & Sun, Siyang, 2023. "Optimal energy management of multiple electricity-hydrogen integrated charging stations," Energy, Elsevier, vol. 262(PB).
    4. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    5. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Bai, Ze & Shi, Junzhang, 2024. "Energy and exergy analysis of a novel dual-source heat pump system with integrated phase change energy storage," Renewable Energy, Elsevier, vol. 222(C).
    6. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
    7. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    8. Rivero, R. & Garfias, M., 2006. "Standard chemical exergy of elements updated," Energy, Elsevier, vol. 31(15), pages 3310-3326.
    9. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Mansouri, Seyed Amir & Zhou, Yuekuan & Jurado, Francisco, 2024. "A local electricity-hydrogen market model for industrial parks," Applied Energy, Elsevier, vol. 360(C).
    10. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2024. "Multi-stage and multi-timescale optimal energy management for hydrogen-based integrated energy systems," Energy, Elsevier, vol. 286(C).
    11. Hu, Xiao & Zhang, Heng & Chen, Dongwen & Li, Yong & Wang, Li & Zhang, Feng & Cheng, Haozhong, 2020. "Multi-objective planning for integrated energy systems considering both exergy efficiency and economy," Energy, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xunwen Zhao & Hailin Mu & Nan Li & Xue Kong & Xunpeng Shi, 2025. "Optimization Research on a Novel Community Integrated Energy System Based on Solar Energy Utilization and Energy Storage," Energies, MDPI, vol. 18(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
    2. Zhao, Yuehao & Li, Zhiyi & Ju, Ping & Zhou, Yue, 2023. "Two-stage data-driven dispatch for integrated power and natural gas systems by using stochastic model predictive control," Applied Energy, Elsevier, vol. 343(C).
    3. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    5. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    6. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    7. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    8. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    12. Ushnik Mukherjee & Azadeh Maroufmashat & Apurva Narayan & Ali Elkamel & Michael Fowler, 2017. "A Stochastic Programming Approach for the Planning and Operation of a Power to Gas Energy Hub with Multiple Energy Recovery Pathways," Energies, MDPI, vol. 10(7), pages 1, June.
    13. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.
    14. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    15. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    16. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    17. Medina, Oscar E. & Amell, Andrés A. & López, Diana & Santamaría, Alexander, 2025. "Comprehensive review of nickel-based catalysts advancements for CO2 methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    18. Zhang, Xiao-Yan & Wang, Cenfeng & Xiao, Jiang-Wen & Wang, Yan-Wu, 2025. "A transactive energy cooperation scheduling for hydrogen-based community microgrid with refueling preferences of hydrogen vehicles," Applied Energy, Elsevier, vol. 377(PC).
    19. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    20. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.