IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3518-d1381002.html
   My bibliography  Save this article

Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network

Author

Listed:
  • Junmin Wang

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Lei Fu

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Cheng Lu

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Shiwu Wang

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Yongshu Zhu

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Zeqi Xu

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

  • Zihan Gui

    (Zhejiang Institute of Hydraulics and Estuary (Zhejiang Institute of Marine Planning and Design), Hangzhou 310020, China)

Abstract

When considering the contradictions between river management and protection in a typical plain river network, it is always confirmed that the river area has usually been encroached upon due to the development of human society. Based on the analysis of multiple attributes of the river network, a statistical model has been proposed in this study in order to determine the river network protection indices such as river area ratio, storage capacity and flux. In this study, a numerical method is proposed to improve the structure and connectivity of the river network by calculating the occupation and supplement balance. According to the principle of water area dynamic balance, the river network structure and its connectivity are improved through water area adjustment in a typical coastal city. As the simulation results show, the water surface ratio equals 8.17%, the storage capacity equals 112.6 million m 3 and the water flux equals to 656.06 m 3 /s in the selected study area. The flood drainage capacity is introduced as the priority function, other functions are also improved due to river management and protection. The harmonious and sustainable coexistence between human society and the river network is then promoted. This comprehensive statistical model proved to be a good tool for the coastal area to enhance the comprehensive attributes of the coastal plain river network and the sustainable development of the local area in the future.

Suggested Citation

  • Junmin Wang & Lei Fu & Cheng Lu & Shiwu Wang & Yongshu Zhu & Zeqi Xu & Zihan Gui, 2024. "Study on River Protection and Improvement Based on a Comprehensive Statistical Model in a Coastal Plain River Network," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3518-:d:1381002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravish K. Rathee & Sudipta K. Mishra, 2024. "Climate change impact assessment on the water resources of the Upper Yamuna River Basin in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18477-18498, July.
    2. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    3. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    4. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    5. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    6. Kashish Sadhwani & T. I. Eldho, 2023. "Assessing the Vulnerability of Water Balance to Climate Change at River Basin Scale in Humid Tropics: Implications for a Sustainable Water Future," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    7. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.
    8. Babak Farjad & Anil Gupta & Danielle J. Marceau, 2016. "Annual and Seasonal Variations of Hydrological Processes Under Climate Change Scenarios in Two Sub-Catchments of a Complex Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2851-2865, June.
    9. Binbin Zhang & Narayan Kumar Shrestha & Prasad Daggupati & Ramesh Rudra & Rituraj Shukla & Baljeet Kaur & Jun Hou, 2018. "Quantifying the Impacts of Climate Change on Streamflow Dynamics of Two Major Rivers of the Northern Lake Erie Basin in Canada," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    10. Jew Das & N. V. Umamahesh, 2018. "Spatio-Temporal Variation of Water Availability in a River Basin under CORDEX Simulated Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1399-1419, March.
    11. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    12. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    13. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    14. Chen, Dengshuai & Li, Jing & Yang, Xiaonan & Zhou, Zixiang & Pan, Yuqi & Li, Manchun, 2020. "Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed," Ecosystem Services, Elsevier, vol. 43(C).
    15. Xu Chen & Ruiguang Han & Ping Feng & Yongjie Wang, 2022. "Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1305-1337, January.
    16. Abdennabi Alitane & Ali Essahlaoui & Ann Van Griensven & Estifanos Addisu Yimer & Narjisse Essahlaoui & Meriame Mohajane & Celray James Chawanda & Anton Van Rompaey, 2022. "Towards a Decision-Making Approach of Sustainable Water Resources Management Based on Hydrological Modeling: A Case Study in Central Morocco," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    17. Junyu Qi & Sheng Li & Qi Yang & Zisheng Xing & Fan-Rui Meng, 2017. "SWAT Setup with Long-Term Detailed Landuse and Management Records and Modification for a Micro-Watershed Influenced by Freeze-Thaw Cycles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3953-3974, September.
    18. Maryam Abbaszadeh & Ommolbanin Bazrafshan & Rasool Mahdavi & Elham Rafiei Sardooi & Sajad Jamshidi, 2023. "Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4177-4194, August.
    19. Pipas Kumar & Varun Joshi, 2019. "Modelling Surface Run-off Response Using Hydrological Model Swat in The Upper Watershed of River Subarnarekha, India," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 09-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3518-:d:1381002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.