IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3462-d1379813.html
   My bibliography  Save this article

A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NO x Emissions

Author

Listed:
  • Juan Manuel Rueda-Vázquez

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Edificio Leonardo da Vinci, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Cordoba, Spain)

  • Javier Serrano

    (Department of Energy Engineering, Universidad de Sevilla, Spain, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain)

  • Sara Pinzi

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Edificio Leonardo da Vinci, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Cordoba, Spain)

  • Francisco José Jiménez-Espadafor

    (Department of Energy Engineering, Universidad de Sevilla, Spain, Camino de los Descubrimientos, s/n, 41092 Sevilla, Spain)

  • M. P. Dorado

    (Department of Physical Chemistry and Applied Thermodynamics, Universidad de Córdoba, Edificio Leonardo da Vinci, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario ceiA3, 14071 Cordoba, Spain)

Abstract

The use of compression ignition engines (CIEs) is associated with increased greenhouse gas emissions. It is therefore necessary to research sustainable solutions and reduce the negative environmental impact of these engines. A widely studied alternative is the use of H 2 in dual-fuel mode. This review has been developed to include the most recent studies on the subject to collect and compare their main conclusions on performance and emissions. Moreover, this study includes most relevant emission control strategies that have not been extensively analyzed in other reviews on the subject. The main conclusion drawn from the literature is the negative effect of the addition of H 2 on NO x . This is due to the increase in temperature during combustion, which increases NO x formation, as the thermal mechanism predominates. Therefore, to reduce these emissions, three strategies have been studied, namely exhaust gas recirculation (EGR), water injection (WI), and compression ratio (CR) reduction. The effect of these techniques on NO x reduction, together with their effect on other analyzed performance parameters, have been deeply analyzed. The studies reviewed in this work indicate that hydrogen is an alternative fuel for CIEs when used in conjunction with techniques that have proven to be effective in reducing NO x .

Suggested Citation

  • Juan Manuel Rueda-Vázquez & Javier Serrano & Sara Pinzi & Francisco José Jiménez-Espadafor & M. P. Dorado, 2024. "A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NO x Emissions," Sustainability, MDPI, vol. 16(8), pages 1-36, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3462-:d:1379813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3462/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3462/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    2. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    3. Tesfa, B. & Mishra, R. & Gu, F. & Ball, A.D., 2012. "Water injection effects on the performance and emission characteristics of a CI engine operating with biodiesel," Renewable Energy, Elsevier, vol. 37(1), pages 333-344.
    4. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    5. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    2. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    3. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    4. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    5. Jemni, Mohamed Ali & Kassem, Sahar Hadj & Driss, Zied & Abid, Mohamed Salah, 2018. "Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine," Energy, Elsevier, vol. 150(C), pages 92-108.
    6. Tian, Erlin & Lv, Guoning & Li, Zuhe, 2024. "Evaluation of emission of the hydrogen-enriched diesel engine through machine learning," Energy, Elsevier, vol. 307(C).
    7. Charalambos Frantzis & Theodoros Zannis & Petros G. Savva & Elias Ar. Yfantis, 2022. "A Review on Experimental Studies Investigating the Effect of Hydrogen Supplementation in CI Diesel Engines—The Case of HYMAR," Energies, MDPI, vol. 15(15), pages 1-17, August.
    8. Muxi Wang & Akira Matsugi & Yoshinori Kondo & Yosuke Sakamoto & Yoshizumi Kajii, 2023. "Impact of Hydrogen Mixture on Fuel Consumption and Exhaust Gas Emissions in a Truck with Direct-Injection Diesel Engine," Energies, MDPI, vol. 16(11), pages 1-12, May.
    9. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    10. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    11. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    12. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    13. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    14. Romualdas Juknelevičius & Alfredas Rimkus & Saugirdas Pukalskas & Stanislaw Szwaja, 2021. "Investigation of Performance and Emission Parameters of Hydroxygen (HHO)-Enriched Diesel Fuel with Water Injection in the Compression Ignition Engine," Clean Technol., MDPI, vol. 3(3), pages 1-26, July.
    15. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    16. Aydın, F. & Öğüt, H., 2017. "Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions," Renewable Energy, Elsevier, vol. 103(C), pages 688-694.
    17. Rimkus, Alfredas & Matijošius, Jonas & Bogdevičius, Marijonas & Bereczky, Ákos & Török, Ádám, 2018. "An investigation of the efficiency of using O2 and H2 (hydrooxile gas -HHO) gas additives in a ci engine operating on diesel fuel and biodiesel," Energy, Elsevier, vol. 152(C), pages 640-651.
    18. Lotfan, S. & Ghiasi, R. Akbarpour & Fallah, M. & Sadeghi, M.H., 2016. "ANN-based modeling and reducing dual-fuel engine’s challenging emissions by multi-objective evolutionary algorithm NSGA-II," Applied Energy, Elsevier, vol. 175(C), pages 91-99.
    19. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
    20. Dinesha, P. & Kumar, Shiva & Rosen, Marc A., 2019. "Combined effects of water emulsion and diethyl ether additive on combustion performance and emissions of a compression ignition engine using biodiesel blends," Energy, Elsevier, vol. 179(C), pages 928-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3462-:d:1379813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.