IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp688-694.html
   My bibliography  Save this article

Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions

Author

Listed:
  • Aydın, F.
  • Öğüt, H.

Abstract

In this study, biodiesel was produced from safflower seeds by converting the raw oil obtained through dampening them via the rolling process, roasting at 90 °C and pressing into Safflower Oil Methyl Esther (Safflower Biodiesel) using the trans-esterification method. Experimental fuels were obtained in the forms of D100, B2.5M2.5D95, B5M5D90, B5M2.5D92.5 and B2.5M5D92.5 by mixing the biodiesel fuel obtained from safflower with diesel fuel, adding bio-ethanol at the rates of 2.5% and 5%, and volumetrically in inverse ratio. Tests were conducted to determine the fuel properties of the mixed fuels obtained and the diesel fuel, their kinematic viscosity, density, water content, pH level, caloric value, flash point, clouding, pour and freezing points, copper bar corrosion test, iodine number, CFPP (Cold Filter Plugging Point) test and cetane number.

Suggested Citation

  • Aydın, F. & Öğüt, H., 2017. "Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions," Renewable Energy, Elsevier, vol. 103(C), pages 688-694.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:688-694
    DOI: 10.1016/j.renene.2016.10.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    2. Karthikeyan, B. & Srithar, K., 2011. "Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol," Applied Energy, Elsevier, vol. 88(1), pages 323-329, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradelle, Florian & Leal Braga, Sergio & Fonseca de Aguiar Martins, Ana Rosa & Turkovics, Franck & Nohra Chaar Pradelle, Renata, 2019. "Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Potential as diesel fuel substitute on an Euro III engine," Renewable Energy, Elsevier, vol. 136(C), pages 586-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    2. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    3. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    4. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    5. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    6. Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    8. Chintala, V. & Subramanian, K.A., 2015. "An effort to enhance hydrogen energy share in a compression ignition engine under dual-fuel mode using low temperature combustion strategies," Applied Energy, Elsevier, vol. 146(C), pages 174-183.
    9. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    10. Odziemkowska, Małgorzata & Matuszewska, Anna & Czarnocka, Joanna, 2016. "Diesel oil with bioethanol as a fuel for compression-ignition engines," Applied Energy, Elsevier, vol. 184(C), pages 1264-1272.
    11. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    12. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    13. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    14. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    15. Charalambos Frantzis & Theodoros Zannis & Petros G. Savva & Elias Ar. Yfantis, 2022. "A Review on Experimental Studies Investigating the Effect of Hydrogen Supplementation in CI Diesel Engines—The Case of HYMAR," Energies, MDPI, vol. 15(15), pages 1-17, August.
    16. T. M. Yunus Khan & Manzoore Elahi M. Soudagar & S. V. Khandal & Syed Javed & Imran Mokashi & Maughal Ahmed Ali Baig & Khadiga Ahmed Ismail & Ashraf Elfasakhany, 2021. "Performance of Common Rail Direct Injection (CRDi) Engine Using Ceiba Pentandra Biodiesel and Hydrogen Fuel Combination," Energies, MDPI, vol. 14(21), pages 1-16, November.
    17. Zbigniew Stępień, 2021. "A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-26, October.
    18. Javed, Syed & Baig, Rahmath Ulla & Murthy, Y.V.V. Satyanarayana, 2018. "Study on noise in a hydrogen dual-fuelled zinc-oxide nanoparticle blended biodiesel engine and the development of an artificial neural network model," Energy, Elsevier, vol. 160(C), pages 774-782.
    19. Behdad Shadidi & Gholamhassan Najafi & Talal Yusaf, 2021. "A Review of Hydrogen as a Fuel in Internal Combustion Engines," Energies, MDPI, vol. 14(19), pages 1-20, September.
    20. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:688-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.