IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3079-d1371646.html
   My bibliography  Save this article

Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion—A New Material for Sustainable Construction

Author

Listed:
  • Malgorzata Ulewicz

    (Faculty of Civil Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Jakub Jura

    (Faculty of Civil Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Adam Gnatowski

    (Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

Abstract

The article presents an analysis of the possibility of using the waste of polyamide 6 modified with fly ash (in the amount of 5, 10 and 15%) from the burning of wood–palm kernel shells biomass as an addition to cement mortar. Fly ash from the burning of biomass in a circulating fluidized bed boiler (which currently has no practical use) was first used to produce polyamide 6, and then post-production polymer waste (added at 20, 40 and 60%) was used to produce ecological mortar. The use of this type of waste is both economically profitable and desirable due to the need to implement waste material management processes in a closed circuit. The addition of polyamide 6 waste containing 5% fly ash in amounts of 20 and 40% and waste containing 10% ash in 20% to cement mortars improves their mechanical properties. The compressive strength of cement mortars (after 28 days of maturation) containing 20 and 40% of polyamide waste containing 5% fly ash increases by 6.6 and 4.6%, respectively, and the flexural strength by 4.9 and 3.4% compared to the control mortars. However, the compressive strength of mortars with the addition of 20% polyamide waste containing 10% fly ash increases by 4.2% and the flexural strength by 3.7%. Cement mortars modified with waste are characterized by slightly lower water absorption and mechanical strength after the freezing–thawing process (frost resistance) compared to control mortars and do not have an adverse effect on the environment in terms of leaching metal ions.

Suggested Citation

  • Malgorzata Ulewicz & Jakub Jura & Adam Gnatowski, 2024. "Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion—A New Material for Sustainable Construction," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3079-:d:1371646
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    2. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewumi John Babafemi & Nina Sirba & Suvash Chandra Paul & Md Jihad Miah, 2022. "Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    2. Sean Jamieson & Greg White & Luke Verstraten, 2024. "Principles for Incorporating Recycled Materials into Airport Pavement Construction for More Sustainable Airport Pavements," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    3. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    4. Khawar Ali & Panumas Saingam & Muhammad Irshad Qureshi & Shahzad Saleem & Adnan Nawaz & Tahir Mehmood & Ahsen Maqsoom & Muhammad Waqas Malik & Suniti Suparp, 2023. "Influence of Recycled Plastic Incorporation as Coarse Aggregates on Concrete Properties," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    5. Liliana Lizárraga-Mendiola & Luis D. López-León & Gabriela A. Vázquez-Rodríguez, 2022. "Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Simona Marinelli & Samuele Marinello & Francesco Lolli & Rita Gamberini & Antonio Maria Coruzzolo, 2023. "Waste Plastic and Rubber in Concrete and Cement Mortar: A Tertiary Literature Review," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    7. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    8. Małgorzata Szostek & Ewa Szpunar-Krok & Marta Jańczak-Pieniążek & Anna Ilek, 2022. "Short-Term Effect of Fly Ash from Biomass Combustion on Spring Rape Plants Growth, Nutrient, and Trace Elements Accumulation, and Soil Properties," IJERPH, MDPI, vol. 20(1), pages 1-25, December.
    9. Mohamed Meftah Ben Zair & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim, 2021. "A Brief Review: Application of Recycled Polyethylene Terephthalate in Asphalt Pavement Reinforcement," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    10. Bala Rama Krishna Chunchu & Jagadeesh Putta, 2019. "Effect of Recycled Plastic Granules as a Partial Substitute for Natural Resource Sand on the Durability of SCC," Resources, MDPI, vol. 8(3), pages 1-14, July.
    11. Fahad K. Alqahtani & Ibrahim S. Abotaleb & Sara Harb, 2021. "LEED Study of Green Lightweight Aggregates in Construction," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    12. Francesco Di Maria & Amani Maalouf, 2023. "Application of Entropy-Based Ecologic Indicators for Intrinsic Sustainability Assessment of EU27 Member States Waste Management Systems at Technosphere Level," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    13. Syed Nasir Abbas & Muhammad Irshad Qureshi & Malik Muneeb Abid & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng, 2022. "An Investigation of Mechanical Properties of Concrete by Applying Sand Coating on Recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) Used as a Partial Replacement of Natural Co," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    14. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    15. Saimin Huang & Hongchang Wang & Waqas Ahmad & Ayaz Ahmad & Nikolai Ivanovich Vatin & Abdeliazim Mustafa Mohamed & Ahmed Farouk Deifalla & Imran Mehmood, 2022. "Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    16. Mazen A. Al-Sinan & Abdulaziz A. Bubshait, 2022. "Using Plastic Sand as a Construction Material toward a Circular Economy: A Review," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3079-:d:1371646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.