IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16340-d995968.html
   My bibliography  Save this article

Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis

Author

Listed:
  • Ichiro Tsuchimoto

    (Graduate School of Innovation Management, Tokyo Institute of Technology, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan)

  • Yuya Kajikawa

    (Graduate School of Innovation Management, Tokyo Institute of Technology, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan
    School of Environment and Society, Tokyo Institute of Technology, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan)

Abstract

Research into plastic recycling is rapidly increasing as ocean and land pollution and ecosystem degradation from plastic waste is becoming a serious concern. In this study, we conducted a systematic review on emerging research topics, which were selected from 35,519 studies on plastic recycling by bibliometrics analysis. Our results show that research on the biodegradability of plastics, bioplastics, life cycle assessment, recycling of electrical and electronic equipment waste, and the use of recycled plastics in construction has increased rapidly in recent years, particularly since 2016. Especially, biodegradability is the most emerging topic with the average year of publication being 2018. Our key finding is that many research area is led by developed countries, while the use of recycled plastics in the construction sector is being actively explored in developing countries. Based on our results, we discuss two types of recycling systems: responsible recycling in the country where plastic waste is generated and promoting recycling through the international division of labor between developed and developing countries. We discuss the advantages and disadvantages of both approaches and propose necessary measures for sustainable and responsible production and consumption of plastics such as waste traceability system and technology transfer between developed and developing countries.

Suggested Citation

  • Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16340-:d:995968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hearn, G.L. & Ballard, J.R., 2005. "The use of electrostatic techniques for the identification and sorting of waste packaging materials," Resources, Conservation & Recycling, Elsevier, vol. 44(1), pages 91-98.
    2. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    3. Hatem Alhazmi & Faris H. Almansour & Zaid Aldhafeeri, 2021. "Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    4. Reddy, Mallampati Srinivasa & Kurose, Keisuke & Okuda, Tetsuji & Nishijima, Wataru & Okada, Mitsumasa, 2008. "Selective recovery of PVC-free polymers from ASR polymers by ozonation and froth flotation," Resources, Conservation & Recycling, Elsevier, vol. 52(6), pages 941-946.
    5. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    6. Yoshiyuki Takeda & Yuya Kajikawa, 2010. "Tracking modularity in citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 783-792, June.
    7. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    8. J. O. Akinyele & A. Ajede, 2018. "The use of granulated plastic waste in structural concrete," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 10(2), pages 169-175, February.
    9. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2011. "Measuring relatedness between communities in a citation network," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1360-1369, July.
    10. Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
    11. Malindu Sandanayake & Yanni Bouras & Robert Haigh & Zora Vrcelj, 2020. "Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review," Sustainability, MDPI, vol. 12(22), pages 1-38, November.
    12. Yao, Zhongliang & Ma, Xiaoqian, 2017. "A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis," Energy, Elsevier, vol. 141(C), pages 1156-1165.
    13. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar," Energy, Elsevier, vol. 53(C), pages 299-305.
    14. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon," Energy, Elsevier, vol. 58(C), pages 688-694.
    15. Naoki Shibata & Yuya Kajikawa & Ichiro Sakata, 2011. "Measuring relatedness between communities in a citation network," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(7), pages 1360-1369, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    2. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    2. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Ogawa, Takaya & Kajikawa, Yuya, 2015. "Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 469-475.
    4. Yuya Kajikawa, 2022. "Reframing evidence in evidence-based policy making and role of bibliometrics: toward transdisciplinary scientometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5571-5585, September.
    5. Takano, Yasutomo & Mejia, Cristian & Kajikawa, Yuya, 2016. "Unconnected component inclusion technique for patent network analysis: Case study of Internet of Things-related technologies," Journal of Informetrics, Elsevier, vol. 10(4), pages 967-980.
    6. Ogawa, Takaya & Kajikawa, Yuya, 2017. "Generating novel research ideas using computational intelligence: A case study involving fuel cells and ammonia synthesis," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 41-47.
    7. Jeong, Yong-Seong & Choi, Young-Kon & Kim, Joo-Sik, 2019. "Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive," Energy, Elsevier, vol. 166(C), pages 335-342.
    8. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    9. Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
    10. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    11. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    13. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    14. Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
    15. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    16. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    17. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    18. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    19. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16340-:d:995968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.