IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5937-d1110729.html
   My bibliography  Save this article

Influence of Recycled Plastic Incorporation as Coarse Aggregates on Concrete Properties

Author

Listed:
  • Khawar Ali

    (Department of Civil Engineering, University of Engineering and Technology, Taxila 47050, Pakistan)

  • Panumas Saingam

    (Department of Civil Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Muhammad Irshad Qureshi

    (Department of Civil Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
    Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA)

  • Shahzad Saleem

    (Department of Civil Engineering, University of Engineering and Technology, Taxila 47050, Pakistan)

  • Adnan Nawaz

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan)

  • Tahir Mehmood

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan)

  • Ahsen Maqsoom

    (Department of Civil Engineering, COMSATS University Islamabad, Wah Campus, Wah Cantt 47040, Pakistan)

  • Muhammad Waqas Malik

    (Department of Civil Engineering, Capital University of Science & Technology, Islamabad 44000, Pakistan)

  • Suniti Suparp

    (Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhonnayok 26120, Thailand)

Abstract

Plastic waste has increased significantly in recent years as a result of fast population growth and urbanization. Studies on the incorporation of plastic aggregates as a substitution for natural aggregates in concrete are needed to successfully reduce both adverse environmental impact and the depletion of natural resources. The objective of this research was to investigate the use of plastic as a partial substitution for natural coarse aggregates in concrete. For this purpose, seven concrete mixes were produced using 0, 10, 15, and 20% plastic coarse aggregates to replace natural aggregates with and without silica fume of similar replacement levels with cement. Fresh density, workability, compressive strength, splitting tensile strength, stress–strain response, and Poisson’s ratio were observed to study the fresh as well as hardened properties of concrete mixtures. Indoor and outdoor thermal performance and thermo-gravimetric analysis were also investigated. The results revealed that the plastic aggregates’ incorporation improved the workability of concrete; however, it negatively influenced the fresh density and mechanical properties of concrete. The compressive and tensile strengths of plastic aggregate concrete without silica fume were reduced by 32 and 33%, respectively. The reduction in strength could be associated with the smooth texture of plastic aggregates. The addition of silica fume with plastic aggregates resulted in denser concrete and improved mechanical properties. In general, the performance of plastic aggregates as a partial replacement for natural aggregates was satisfactory, which suggests their possible use to produce eco-friendlier concrete.

Suggested Citation

  • Khawar Ali & Panumas Saingam & Muhammad Irshad Qureshi & Shahzad Saleem & Adnan Nawaz & Tahir Mehmood & Ahsen Maqsoom & Muhammad Waqas Malik & Suniti Suparp, 2023. "Influence of Recycled Plastic Incorporation as Coarse Aggregates on Concrete Properties," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5937-:d:1110729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adewumi John Babafemi & Branko Šavija & Suvash Chandra Paul & Vivi Anggraini, 2018. "Engineering Properties of Concrete with Waste Recycled Plastic: A Review," Sustainability, MDPI, vol. 10(11), pages 1-26, October.
    2. Marco Filippo Ferrotto & Panagiotis G. Asteris & Ruben Paul Borg & Liborio Cavaleri, 2022. "Strategies for Waste Recycling: The Mechanical Performance of Concrete Based on Limestone and Plastic Waste," Sustainability, MDPI, vol. 14(3), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewumi John Babafemi & Nina Sirba & Suvash Chandra Paul & Md Jihad Miah, 2022. "Mechanical and Durability Assessment of Recycled Waste Plastic (Resin8 & PET) Eco-Aggregate Concrete," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    2. Sean Jamieson & Greg White & Luke Verstraten, 2024. "Principles for Incorporating Recycled Materials into Airport Pavement Construction for More Sustainable Airport Pavements," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    3. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    4. Malgorzata Ulewicz & Jakub Jura & Adam Gnatowski, 2024. "Cement Mortars Based on Polyamide Waste Modified with Fly Ash from Biomass Combustion—A New Material for Sustainable Construction," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
    5. Liliana Lizárraga-Mendiola & Luis D. López-León & Gabriela A. Vázquez-Rodríguez, 2022. "Municipal Solid Waste as a Substitute for Virgin Materials in the Construction Industry: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Simona Marinelli & Samuele Marinello & Francesco Lolli & Rita Gamberini & Antonio Maria Coruzzolo, 2023. "Waste Plastic and Rubber in Concrete and Cement Mortar: A Tertiary Literature Review," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    7. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    8. Mohamed Meftah Ben Zair & Fauzan Mohd Jakarni & Ratnasamy Muniandy & Salihudin Hassim, 2021. "A Brief Review: Application of Recycled Polyethylene Terephthalate in Asphalt Pavement Reinforcement," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    9. Rahaf Ajaj & Wisam Abu Jadayil & Hamna Anver & Eman Aqil, 2022. "A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    10. Bala Rama Krishna Chunchu & Jagadeesh Putta, 2019. "Effect of Recycled Plastic Granules as a Partial Substitute for Natural Resource Sand on the Durability of SCC," Resources, MDPI, vol. 8(3), pages 1-14, July.
    11. Fahad K. Alqahtani & Ibrahim S. Abotaleb & Sara Harb, 2021. "LEED Study of Green Lightweight Aggregates in Construction," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    12. Syed Nasir Abbas & Muhammad Irshad Qureshi & Malik Muneeb Abid & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng, 2022. "An Investigation of Mechanical Properties of Concrete by Applying Sand Coating on Recycled High-Density Polyethylene (HDPE) and Electronic-Wastes (E-Wastes) Used as a Partial Replacement of Natural Co," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    13. Andréia Arenari de Siqueira & Guilherme Chagas Cordeiro, 2022. "Sustainable Cements Containing Sugarcane Bagasse Ash and Limestone: Effects on Compressive Strength and Acid Attack of Mortar," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    14. Joyce Nakayenga & Mutsuko Inui & Toshiro Hata, 2022. "Study on the Effect of Amorphous Silica from Waste Granite Powder on the Strength Development of Cement-Treated Clay for Soft Ground Improvement," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    15. Alessandra Bonoli & Sara Zanni & Francisco Serrano-Bernardo, 2021. "Sustainability in Building and Construction within the Framework of Circular Cities and European New Green Deal. The Contribution of Concrete Recycling," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    16. Saimin Huang & Hongchang Wang & Waqas Ahmad & Ayaz Ahmad & Nikolai Ivanovich Vatin & Abdeliazim Mustafa Mohamed & Ahmed Farouk Deifalla & Imran Mehmood, 2022. "Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review," IJERPH, MDPI, vol. 19(8), pages 1-31, April.
    17. Mazen A. Al-Sinan & Abdulaziz A. Bubshait, 2022. "Using Plastic Sand as a Construction Material toward a Circular Economy: A Review," Sustainability, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5937-:d:1110729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.